首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Climate change is one of the most severe global problems in the 21st century. Main drivers are the combustion of fossil fuels, the emissions of industrial gases, emissions from agricultural sites and animal husbandry as well as deforestation. A new cooperative climate regime is necessary to meet the World’s energy and environmental problems against the background of China’s and India’s energy consumption growth. For the second commitment period of the Kyoto Protocol after 2012, a successor regime has to be agreed on. The current approaches, however, have a common weakness. They at the same time (a) do not acknowledge the historical responsibilities of the industrialized countries for the historical greenhouse gas emissions and the responsibility of developing countries for a large fraction of the current future emissions, and (b) do not provide for a fair distribution of emission rights. Against this background, this article aims at forecasting China’s and India's CO2-emissions up to 2050 and developing a new suggestion for a post Kyoto climate regime based on a cumulated per capita CO2-emission rights taking the weaknesses of the currently discussed post Kyoto approaches into account.  相似文献   

2.
China encourages the demonstration of carbon capture and storage (CCS) projects. In an effort to identify gaps and provide suggestions for environmental risk management of carbon dioxide (CO2) geological storage in China, this article presents a concise overview of potential health, safety and environmental (HSE) risks and environmental management regulations for CO2 geological storage in Australia, Japan, the United States (USA), the European Union (EU), and the United Kingdom (UK). The environmental impact assessment (EIA) experience of Shenhua Ordos Coal-to-Liquid (CTL) Project and PetroChina Jilin Oil Field enhanced oil recovery (EOR) is subsequently analyzed in light of our field investigation, and gaps in current EIA guidelines that are applicable to CO2 geological storage projects are identified. It is found that there are no specific environmental risk regulations suitable for CO2 storage in China, and environmental risk management lags behind the development of CCS technology, which presents a challenge to demonstration enterprises in terms of assessing environmental risk. One major challenge is the overestimation or underestimation of this risk on the part of the enterprise, and another is a lack of applicable regulations for government sectors to supervise the risk throughout CCS projects. Therefore, there is a pressing need for China to formulate environmental management regulations that include environmental risk assessment, mandatory monitoring schemes, environmental emergency plans, and related issues.  相似文献   

3.
The study presents the results of an integrated assessment of carbon capture and storage (CCS) in the power plant sector in Germany, with special emphasis on the competition with renewable energy technologies. Assessment dimensions comprise technical, economic and environmental aspects, long-term scenario analysis, the role of stakeholders and public acceptance and regulatory issues. The results lead to the overall conclusion that there might not necessarily be a need to focus additionally on CCS in the power plant sector. Even in case of ambitious climate protection targets, current energy policy priorities (expansion of renewable energies and combined heat and power plants as well as enhanced energy productivity) result in a limited demand for CCS. In case that the large energy saving potential aimed for can only partly be implemented, the rising gap in CO2 reduction could only be closed by setting up a CCS-maximum strategy. In this case, up to 22% (41 GW) of the totally installed load in 2050 could be based on CCS. Assuming a more realistic scenario variant applying CCS to only 20 GW or lower would not be sufficient to reach the envisaged climate targets in the electricity sector. Furthermore, the growing public opposition against CO2 storage projects appears as a key barrier, supplemented by major uncertainties concerning the estimation of storage potentials, the long-term cost development as well as the environmental burdens which abound when applying a life-cycle approach. However, recently, alternative applications are being increasingly considered?Cthat is the capture of CO2 at industrial point sources and biomass based energy production (electricity, heat and fuels) where assessment studies for exploring the potentials, limits and requirements for commercial use are missing so far. Globally, CCS at power plants might be an important climate protection technology: coal-consuming countries such as China and India are increasingly moving centre stage into the debate. Here, similar investigations on the development and the integration of both, CCS and renewable energies, into the individual energy system structures of such countries would be reasonable.  相似文献   

4.
Carbon dioxide emissions from 1990 to 2100 AD are decomposed into the product of four factors: population size, affluence (measured here as GDP per capita), energy intensity (energy use per unit GDP) and carbon intensity (carbon dioxide emissions per unit energy). These emissions factors are further subdivided into three regions: more developed countries (MDCs), China, and the remaining less developed countries (LDCs). Departures from a baseline scenario (based on IPCC, 1992a — the so-called ‘business-as-usual’ scenario) are calculated for a variety of alternative assumptions concerning the four emissions factors in the three regions. Although the IPCC scenario is called a ‘non-intervention’ scenario, it is shown, for example, that large decreases in energy intensity in China or carbon intensity in MDCs are built into the ‘business as usual’ case — and such large changes vary considerably from region to region. We show what CO2 emissions would look like if each of these four emissions factors projected in the baseline case somehow remained constant at 1990 levels. Certain factors like energy intensity improvements and long-term population growth in LDCs, or GDP growth and carbon intensity improvements in MDCs, are shown to have a big contribution to cumulative global emissions to 2100 AD, and consequently, changes in these projected factors will lead to significant deviations from baseline emissions. None of the scenarios examined in this analysis seems to indicate that any one global factor is clearly dominant, but cultural, economic, and political costs or opportunities of altering each factor may differ greatly from country to country.  相似文献   

5.
Carbon dioxide emissions from 1990 to 2100 AD are decomposed into the product of four factors: population size, affluence (measured here as GDP per capita), energy intensity (energy use per unit GDP) and carbon intensity (carbon dioxide emissions per unit energy). These emissions factors are further subdivided into three regions: more developed countries (MDCs), China, and the remaining less developed countries (LDCs). Departures from a baseline scenario (based on IPCC, 1992a — the so-called ‘business-as-usual’ scenario) are calculated for a variety of alternative assumptions concerning the four emissions factors in the three regions. Although the IPCC scenario is called a ‘non-intervention’ scenario, it is shown, for example, that large decreases in energy intensity in China or carbon intensity in MDCs are built into the ‘business as usual’ case — and such large changes vary considerably from region to region. We show what CO2 emissions would look like if each of these four emissions factors projected in the baseline case somehow remained constant at 1990 levels. Certain factors like energy intensity improvements and long-term population growth in LDCs, or GDP growth and carbon intensity improvements in MDCs, are shown to have a big contribution to cumulative global emissions to 2100 AD, and consequently, changes in these projected factors will lead to significant deviations from baseline emissions. None of the scenarios examined in this analysis seems to indicate that any one global factor is clearly dominant, but cultural, economic, and political costs or opportunities of altering each factor may differ greatly from country to country.  相似文献   

6.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

7.
CO<Subscript>2</Subscript> emission and economic growth of Iran   总被引:1,自引:0,他引:1  
This research investigates the relationship between CO2 emission and economic growth of Iran over 14 years from 1994 to 2007 using a national panel data set. The statistical and emission intensity methodologies are used for analyzing the data series. The study finds evidence supporting parameters which conclude the stability of significant correlation between CO2 emission and economic development over time during the years under investigation in Iran. This relationship is investigated and discussed for the energy sectors of the country as well. The results confirm that in all sectors except of agricultural, there is a positive strong correlation between CO2 emission and economic growth throughout the study period. In most sectors, CO2 emission intensity (the emission per unit of GDP) doesn’t show increasing trends while the absolute emission is rapidly increasing by the economic growth.  相似文献   

8.
Employing global multi-regional input–output models, this paper revisits the carbon dioxide (CO2) emission trade (including exports and imports) and assesses their positions in the national emissions of 14 major countries with large national emissions or large emission trades during 1995–2009. It especially explores the evolution of the emission trades of these countries from both continuous time series and comparative perspectives, in order to provide an explanation for CO2 emission spillovers across countries. The main findings obtained were as follows: (1) China was the largest CO2 exporter to other countries, accounting for over 20 % of global exports since 2005; the CO2 exports of the United States of America (USA), Germany, and Japan varied slightly over this time period, but overall, their proportions had decreased. (2) The CO2 imports of the USA were the largest, occupying around 20 % of the global CO2 imports; meanwhile, China’s CO2 imports increased rapidly and ranked the second largest. (3) For Chinese Taiwan, its proportion of CO2 exports in production-based emissions ranked the highest while that of the USA ranked the lowest; highly CO2 import-dependent countries with an over 40 % proportion of CO2 imports in its consumption-based emissions included France, Germany, Italy, and Spain, while China, India, and Russia remained the lowest, distinguished from their physical energy imports. These results suggested that the global policy makers should take the CO2 emissions in trade into consideration when carefully accounting for national emissions inventories.  相似文献   

9.
This paper presents the outcome of a feasibility study on underground coal gasification (UCG) combined with direct carbon dioxide (CO2) capture and storage (CCS) at a selected site in Bulgaria with deep coal seams (>1,200 m). A series of state-of-the-art geological, geo-mechanical, hydrogeological and computational models supported by experimental tests and techno-economical assessments have been developed for the evaluation of UCG-CCS schemes. Research efforts have been focused on the development of site selection requirements for UCG-CCS, estimation of CO2 storage volumes, review of the practical engineering requirements for developing a commercial UCG-CCS storage site, consideration of drilling and completion issues, and assessments of economic feasibility and environmental impacts of the scheme. In addition, the risks of subsidence and groundwater contamination have been assessed in order to pave the way for a full-scale trial and commercial applications. The current research confirms that cleaner and cheaper energy with reduced emissions can be achieved and the economics are competitive in the future European energy market. However the current research has established that rigorous design and monitor schemes are essential for productivity and safety and the minimisation of the potential environmental impacts. A platform has been established serving to inform policy-makers and aiding strategies devised to alleviate local and global impacts on climate change, while ensuring that energy resources are optimally harnessed.  相似文献   

10.
Technological and regulatory responses to large-scale environmental threats, such as depletion of the natural resources and climate change, tend to focus on one issue at time. Emerging carbon capture and storage (CCS) technologies that are in different stages of development offer a case that demonstrates this dilemma. This article approximates the implications of two emerging CCS applications on existing steel mill’s CO2 emissions and its use of material resources. The evaluated applications are based on the mineralization method and the comparative case represents two versions of a geological CCS method. The results of the evaluation indicate that if technical bottleneck issues related to CO2 sequestration with mineralization can be solved, it can be possible to achieve a similar CO2 reduction performance with mineralization-based CCS applications as with more conventional CCS applications. If the CO2 capturing potential of mineralization-based applications could be taken into use, it could also enable the significant improvement of material efficiency of industrial operations. Urgent problem hampering the development of mineralization-based CCS applications is that the policy regimes related to CCS especially in the European Union (EU) do not recognize mineralization as a CCS method. Article suggests that the focus in the future evaluations and in policy should not be directed only on CO2 sequestration capacity of CCS applications. Similarly important is to consider their implications on material efficiency. Article also outlines modifications to the EU’s CCS policy in terms of the formal terminology.  相似文献   

11.
According to the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol under it, industrial countries have to estimate their greenhouse gas emissions annually, and assess the uncertainties in these estimates. In Finland, agricultural methane (CH4) and nitrous oxide (N2O) emissions represent 7% of anthropogenic greenhouse gas emissions, and globally the share is much higher. Agriculture is one of the most uncertain emission categories (representing over 20% of greenhouse gas inventory uncertainty in Finland), due to both high natural variability of the emission sources and poor knowledge of the emission-generating processes. In this paper, we present an uncertainty estimate of agricultural CH4 and N2O emissions from Finland in 2002. Uncertainties were estimated based on measurement data, literature and expert judgement, and total uncertainty in agriculture was calculated using Monte Carlo simulation. According to the calculations, agricultural CH4 and N2O emissions from Finland were 3.7 to 7.8 Tg carbon dioxide (CO2) equivalents, 5.4 Tg being the mean value.Estimates of CH4 emissions are more reliable than those of N2O. N2O from agricultural soils was the most uncertain emission category, and the uncertainty was not reduced by using available national measurement data of N2O fluxes. Sensitivity study revealed that the uncertainty in total agricultural inventory could be 7% points lower, if more accurate emission estimation methods were used, including 1) improved data collection in area estimates of organic soils, 2) climate-specific methods for N2O from agricultural soils as already presented in literature, and 3) more detailed CH4 estimation methods for enteric fermentation which can be achieved by investigating national circumstances and digestible systems of animals in more detail.  相似文献   

12.
Integration of CO2 capture and storage (CCS) into coal-fired power stations is seen as a way of significantly reducing the carbon emissions from stationary sources. A large proportion of the estimated cost of CCS is because of the additional energy expended to capture the CO2 and compress it for transport and storage, reducing the energy efficiency of the power plant. This study uses pinch analysis and heat integration to reduce the overall energy penalty and, therefore, the cost of implementing CCS for power plants where the additional heat and power for the CCS plant will be provided by the existing power plant. A combined pinch analysis and linear programming optimisation are applied to determine targets for the energy penalty of existing power plants. Two existing pulverised brown coal power plants with new CCS plants using solvent absorption are used as the basis for the study that show the energy penalty can be reduced by up to 50% by including effective heat integration. The energy penalty can be further reduced by pre-drying the coal.  相似文献   

13.
The potential for CO2 emission reductions through carbon capture and storage (CCS) is depending on investments that can bring the technology from the current R&D through to commercial applications. The intermediate step in this development is demonstration plants that can prove the technical, economic, social, and ecological feasibility of CCS technologies. Based on a CCS stakeholder questionnaire survey and a literature review, we critically analyse discrepancies regarding perceptions of deployment obstacles and experiences from early demonstration plants. The analysis identifies discrepancies between CCS policies versus important deployment considerations and CCS stakeholder policy demands. The discrepancy gap is emphasised by lessons from restructured, postponed, and cancelled CCS projects. To bridge this cognitive gap towards proving CCS through demonstration activities, the article highlights policy implications of establishing a broad understanding of deployment obstacles. Attention to these obstacles is important for policymakers and industry in channelling efforts to demonstrating CCS, hence validating the current focus on CCS as a key abatement potential. Under present conditions, the findings question the robustness of current CCS abatement potential estimates and deployment goals as established by policymakers and in scenarios.  相似文献   

14.
山西作为我国的能源大省,其碳排放强度更是持续位于全国最高水平,分析山西省CO2排放影响因素,探究其发展模式,对于山西省的低碳发展意义重大.基于STIRPAT模型,将山西省能源CO2排放的影响因素确定为人口、城镇化率、人均GDP、第二产业占GDP比重、能源强度.在岭回归拟合分析的基础上,利用灰色GM(1,1)模型对山西省CO2排放驱动因素值进行预测,以提高能源CO2排放预测的准确性,并结合情景分析方法,为山西省的CO2减排设计了10种不同的发展情景.结果表明:①人口对山西省CO2排放影响最大,其次是城镇化率和第二产业占GDP比重.②在当前经济发展阶段,能源强度和人均GDP等因素对山西省的CO2排放影响不大,但能源强度对CO2排放的抑制作用不可忽略.③山西省CO2减排最佳的情景方案为适当控制人口数量和城镇化进程、加快产业结构的转型和技术的革新、降低第二产业占GDP比重和能源强度,并且大力推广新能源和清洁可再生能源的开发使用以优化能源消费结构.在该情景下,山西省2020年的CO2排放量可以控制在5.16×108 t.   相似文献   

15.
The NitroEurope project aims to improve understanding of the nitrogen (N) cycle at the continental scale and quantify the major fluxes of reactive N by a combination of reactive N measurements and modelling activities. As part of the overall measurement strategy, a network of 13 flux ‘super sites’ (Level-3) has been established, covering European forest, arable, grassland and wetland sites, with the objective of quantifying the N budget at a high spatial resolution and temporal frequency for 4.5 years, and to estimate greenhouse gas budgets (N2O, CH4 and CO2). These sites are supported by a network of low-cost flux measurements (Level-2, 9 sites) and a network to infer reactive N fluxes at 58 sites (Level-1), for comparison with carbon (C) flux measurements.Measurements at the Level-3 sites include high resolution N2O, NO (also CH4, CO2) fluxes, wet and dry N deposition, leaching of N and C and N transformations in plant, litter and soil. Results for the first 11 months (1.8.2006 to 30.6.2007) suggest that the grasslands are the largest source of N2O, that forests are the largest source of NO and sink of CH4 and that N deposition rates influence NO and N2O fluxes in non-agricultural ecosystems. The NO and N2O emission ratio is influenced by soil type and precipitation. First budgets of reactive N entering and leaving the ecosystem and of net greenhouse gas exchange are outlined. Further information on rates of denitrification to N2 and biological N2 fixation is required to complete the N budgets for some sites. The quantitative roles played by CO2, N2O and CH4 in defining net greenhouse gas exchange differ widely between ecosystems depending on the interactions of climate, soil type, land use and management.  相似文献   

16.
Carbon capture and storage (CCS) may become a key technology to limit human-induced global warming, but many uncertainties prevail, including the necessary technological development, costs, legal ramifications, and siting. As such, an important question is the scale of carbon dioxide abatement we require from CCS to meet future climate targets, and whether they appear reasonable. For a number of energy technology and efficiency improvement scenarios, we use a simple climate model to assess the necessary contribution from CCS to ‘fill the gap’ between scenarios’ carbon dioxide emissions levels and the levels needed to meet alternative climate targets. The need for CCS depends on early or delayed action to curb emissions and the characteristics of the assumed energy scenario. To meet a 2.5°C target a large contribution and fast deployment rates for CCS are required. The required deployment rates are much faster than those seen in the deployment of renewable energy technologies as well as nuclear power the last decades, and may not be feasible. This indicates that more contributions are needed from other low-carbon energy technologies and improved energy efficiency, or substitution of coal for gas in the first half of the century. In addition the limited availability of coal and gas by end of the century and resulting limited scope for CCS implies that meeting the 2.5°C target would require significant contributions from one or more of the following options: CCS linked to oil use, biomass energy based CCS (BECCS), and CCS linked to industrial processes.  相似文献   

17.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   

18.
Because volcanic soils store large amounts of soil organic carbon (SOC), they play a far more important role in the carbon (C) cycle than their limited global coverage suggests. We analysed the C released as CO2 from a range of volcanic soils under natural conditions and analysed the influence of environmental variables (moisture and temperature), substrate availability (as assessed from the contents of various SOC fractions and the inputs of plant residues from litterfall), respiratory agents (roots, microorganisms and decomposing enzymes) and other pedological features of the topsoils (0–30 cm depth) on the CO2 efflux rates over a 2-year experimental period. High CO2 efflux rates (419 g C-CO2 m?2 y?1 as the average for Andisols) were obtained that were related to significant decreases in the amount of SOC stored. CO2 release was strongly controlled by soil moisture, although it was inhibited in the Andisols with the highest moisture levels (above 50 kg m?2 in topsoil). It was not responsive to the availability of decomposing microorganisms or enzymes and appeared more related to the inputs of easily decomposable plant residues than to the amount of either labile or recalcitrant SOC. Among the SOC pools, only the water-soluble C in saturated paste extracts (WSCse) of air-dried soil samples was consistently correlated with the CO2 efflux rates. The desiccation of Andisols appeared to induce the release of previously stabilised SOC, which was readily mineralised when the moisture conditions became favourable. The results of this study indicate that SOC storage in Andisols is highly vulnerable to drying-wetting processes even in unmanaged natural ecosystems and that microclimate conditions can be critical for successful C sequestration in these soils.  相似文献   

19.
广州市氮氧化物的数值模拟及暴露影响评价   总被引:1,自引:1,他引:0  
主要介绍了大气暴露风险评价ADMER模式的模块组成及其主要功能,并利用该模式对广州地区常规的氮氧化物进行了暴露风险评价研究.利用中尺度气象模式模拟的5km气象场数据和收集整理的年平均污染排放源资料进行了大气污染扩散模拟计算.结果表明,无论是氮氧化物的浓度值还是其时空变化趋势,ADMER模式模拟的结果与实际观测均较一致,相关系数达0.76.氮氧化物的浓度高值出现在冬春季节,夏季的浓度相对较低,这主要是受气象场条件的影响.空间场上,氮氧化物的高值区位于广州地区的西南和中部,与工业大点源以及地面源排放的分布一致,而广州地区东北部氮氧化物的浓度值相对较低.在浓度评估的基础上,对暴露人口也进行了估算.由于广州是广东省的主要人口密集区,所以,定量化暴露人口对于进一步开展污染控制减排策略有一定的指示意义.  相似文献   

20.
李惠娟  周德群  魏永杰 《环境科学》2018,39(8):3467-3475
开展大样本城市的空气污染造成人群健康风险及经济损失研究,对于推进空气污染的防控与区域合作治理、公众健康素养提升具有重要意义.本文以我国62个环保重点监测城市为样本,运用环境健康风险与环境价值评估方法,对2015年PM_(2.5)污染引发的健康风险及经济损失进行评价,结果表明PM_(2.5)污染造成约12.51万人早逝[95%CI(置信区间):3.33~20.59万人]及1 009.59万人次患病、门诊和住院(95%CI:470.38~1 501.93万人次),占这些城市市区总人口的3.53%(95%CI:1.64%~5.26%).造成经济损失5 705.57亿元(95%CI:1 930.82~8 742.14亿元),占这些城市GDP总和的1.53%(95%CI:0.52%~2.35%),人均经济损失1 970元(95%CI:667~3 018元).四大城市群中,京津冀在健康风险、健康经济损失及其占GDP比重、人均损失方面均高于长三角、珠三角及东北.三大经济区中,东部的健康风险及经济损失高于中部与西部,三地的人均经济损失差别不大.南北方的经济损失相差很小,但北方的经济损失占GDP比重与人均损失均远高于南方.保定、郑州、济南、北京等市PM_(2.5)浓度很高,健康风险与经济损失问题突出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号