首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 547 毫秒
1.
为了解“十三五”期间天津市PM2.5减排效果,基于2015~2020年不同大气污染治理措施的减排量核算结果,利用空气质量模型和高时空分辨率PM2.5监测数据,对“十三五”期间天津市PM2.减排效果进行分析.结果表明,2015~2020年,天津市SO2、 NOx、 VOCs和PM2.5的排放量分别减少4.77×104、 6.20×104、 5.37×104和3.53×104t,其中工艺过程、散煤和电力治理对SO2的减排贡献大,工艺过程、电力和钢铁治理对NOx的减排贡献大,工艺过程对VOCs的减排贡献最大,工艺过程、散煤和钢铁治理对PM2.5的减排贡献大.“十三五”期间天津市PM2.5浓度平均值、污染天数和重污染天数明显下降,分别较2015年下降31.4%、 51.2%和60.0%;与前...  相似文献   

2.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

3.
利用2018~2020年北京市33个环境评价站和5个区域评价站的空气质量数据,以及气象数据和北京市城区PM2.5组分数据,研究了3年间北京PM2.5的浓度演变、时空变化和重污染发生情况,并对PM2.5组分和气象条件变化进行比较分析.结果发现,3年间北京市ρ(PM2.5)分别为51、42和38μg·m-3,2020年的PM2.5相比2017年下降30.9%,但仍超过国际标准8.6%;北京市PM2.5空间分布依旧维持南高北低的特征,但南北差异逐年减小,区域浓度趋于均一化;1~3月PM2.5浓度相对较高,8~9月PM2.5浓度相对较低,采暖季各污染物浓度均显著高于非采暖季,NOx和CO分别偏高58.4%和52.9%,PM2.5偏高27.5%;采暖季和非采暖季PM2.5日变化出现反向特征,采暖季夜间PM2.5明显...  相似文献   

4.
基于2016年河南省农村污染物排放清单,采用县级优化模型,设置了基准和散煤治理2种情景,评估了2025年1月份河南省农村散煤替代的减排潜力,利用空气质量模型(WRF-CMAQ)模拟其对PM2.5污染改善的贡献,并采取泊松回归模型分析了相应的居民健康效益.结果表明,由于围护结构改造的成本较低及保温效果显著,其与采暖设备的组合技术在河南省农村家庭是最适合推广的采暖技术.在散煤治理情景下,2025年1月河南省农村居民燃烧源的SO2,NOx,CO,PM10,PM2.5,VOCs,NH3排放量与基准情景相比分别下降了98.3%,82.6%,99.8%,99.2%,98.8%,98.2%和99.4%.散煤治理情景下河南省2025年1月PM2.5浓度模拟结果与基准情景相比下降4.1μg/m3,可以避免2220人过早死亡,带来23.5亿元经济效益.  相似文献   

5.
我国自2013年起对重点区域逐步开展重污染天气应对工作,以削减大气重污染峰值、减缓重污染的发生和发展.为更客观地评估重污染天气应急减排措施的效果,基于环境监测数据对应急效果评估开展方法学研究,通过对洛伦兹曲线内涵的拓展,提出污染物高位累积浓度占比的概念,并以PM2.5、PM10、SO2、NO2四种污染物为研究对象,评估重污染天气应急措施减排效果,同时将评估结果与空气质量模型模拟结果进行相互辅证.结果表明:2016年和2017年秋冬季(当年10月1日-翌年3月31日)"2+26"城市PM2.5、PM10、SO2、NO2高位累积浓度占比较2015年同期均有所下降,降幅为0.43%~3.80%;PM2.5、PM10高位累积浓度占比降幅相对SO2、NO2大,其中,2016年和2017年秋冬季PM2.5高位累积浓度占比较2015年同期降幅均为2.23%,PM10高位累积浓度占比较2015年同期降幅分别为1.89%、3.80%.研究显示,应急措施在"2+26"城市范围内对PM2.5、PM10、SO2、NO2起到了较显著的重污染削峰作用,其中,应急措施对PM2.5、PM10等颗粒物重污染削峰效果优于SO2、NO2等气态污染物.   相似文献   

6.
散煤燃烧等低矮面源的排放对京津冀等地区采暖季ρ(PM2.5)贡献较大,是重污染天气形成的重要原因之一.针对京津冀地区居民采暖“煤改电”治理工程,以2025年为目标年,以不做任何散煤治理工作为基准情景,同时设计2种不同的控制情景(控制情景1、控制情景2),评估不同控制情景下“煤改电”带来的健康效益.通过综合考量民用散煤占燃煤消费量的比例、散煤PM2.5排放强度,结合京津冀地区各城市PM2.5源解析结果,确定民用散煤对大气环境ρ(PM2.5)的贡献系数,计算空气质量改善情况.在此基础上,综合流行病学相关研究成果,运用环境健康风险评估方法,预测不同控制情景中京津冀地区居民采暖“煤改电”带来的健康效益.结果表明:①京津冀地区在控制情景1中ρ(PM2.5)年均值分别下降4.9、4.9和1.1 μg/m3,在控制情景2中分别下降5.4、5.6和2.0 μg/m3;②在控制情景1、控制情景2中京津冀地区居民采暖“煤改电”带来的健康效益分别为266.55×108和352.34×108元,分别约占京津冀地区2015年GDP的0.38%和0.51%.研究显示,通过实施”煤改电”,京津冀地区可实现的健康效益相当可观,其中,北京市获得的健康效益最大,其次是河北省和天津市.   相似文献   

7.
PM2.5主要受排放源、大气化学、气象条件等驱动因素的非线性影响,了解驱动因素对PM2.5浓度的影响十分重要. 本研究基于南开大学大气环境综合观测超级站的逐时在线观测数据,耦合机器学习方法和受体模型,揭示了驱动因素的重要性以及对PM2.5浓度的影响. 结果表明:① 2018年11月—2020年10月观测地点的PM2.5浓度范围为3.21~291.80 μg/m3,采暖季PM2.5浓度和化学组分均高于非采暖季. ②使用受体模型解析PM2.5的来源及其贡献,发现观测期间二次源的贡献率(44.7%)最高,其他依次为燃煤源(23.6%)、机动车排放源(11.0%)、扬尘源(9.9%)、生物质燃烧源(7.2%),工业源的贡献率(3.6%)最小. ③利用随机森林-SHAP模型量化排放源、大气氧化能力、气象条件等驱动因素对PM2.5浓度的影响,发现观测期间排放源对PM2.5浓度的影响程度为54.3%,高于其他驱动因素;气象条件对PM2.5浓度的影响程度次之,为32.4%;大气氧化能力对PM2.5浓度的影响程度相对较低,为13.3%. 在采暖季和非采暖季,各驱动因素对PM2.5浓度的重要性在排序上没有变化,然而驱动因素对PM2.5浓度的影响程度有所不同. 采暖季排放源对PM2.5浓度的影响程度高于非采暖季,采暖季大气压对PM2.5浓度的影响程度低于非采暖季. 研究显示,排放源对PM2.5的影响相对较大,气象条件和大气氧化能力对PM2.5浓度的影响也不容忽视.   相似文献   

8.
利用机器学习模型控制气象因素影响,定量分析了疫情期间污染源减排对咸阳空气质量的影响.结果表明,与未发生疫情情景相比,疫情期间咸阳PM2.5、PM10、SO2、NO2和CO浓度分别下降19.3%、26.0%、13.4%、60.1%和9.1%,NO2降幅最大,SO2和CO降幅较小,O3浓度不降反而上升50.9%.在一次排放和二次生成前体物都下降的情况下,PM2.5降幅低于预期,O3浓度不降反升,反映出PM2.5和O3治理的复杂性,暗示了剩余污染源对咸阳空气质量影响较大,而停产限产政策(与疫情影响类似)对咸阳空气质量改善有限,未来应重点关注散煤和生物质燃烧、热力生产和供应、原油加工及石油制品制造等剩余污染源的治理.  相似文献   

9.
利用合肥市2015—2017年冬半年环境监测站和自动气象站数据,以及高空、地面天气图资料,运用常规统计和天气学方法分析了降水强度及不同降水天气系统对PM2.5、PM10浓度的影响.结果表明:冬半年降水日PM2.5、PM10平均浓度较无降水日分别下降18.1μg·m-3(23.9%)、38.2μg·m-3(37.8%);小于5 mm的日降水量对颗粒物清除效果不明显,且有28%样本PM2.5和PM10浓度不降反升;当日降水量大于10 mm,位于“优”等级的PM2.5和PM10浓度比例分别为54%和80%,显著上升.连续降水期间PM2.5、PM10日均浓度中位值和均值逐日下降,降水第2日PM2.5、PM10日均浓度降幅最大.合肥冬半年降水天气系统可以分为切变线Ⅰ型、切变线Ⅱ型、低槽冷锋型和...  相似文献   

10.
针对京津冀及周边"2+26"城市秋冬季不同大气污染治理措施的减排量进行核算,结果表明,2017~2018年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为43.26,20.63,18.36,28.00和47.31万t,2018~2019年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为16.68,18.11,11.03,17.04和25.33万t.基于此,采用CAMx模型对各项措施的减排效果进行模拟评估,采取措施后,2017~2018年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为22.69μg/m3(42.67%),33.22μg/m3(37.81%),24.28μg/m3(22.58%)和31.26μg/m3(18.67%),2018~2019年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为9.36μg/m3(26.86%),25.73μg/m3(30.62%),16.38μg/m3(16.09%)和20.43μg/m3(12.33%).2017~2018年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:"散乱污"企业治理 > 交通运输结构调整 > 企业错峰生产 > 民用散煤替代 > 燃煤锅炉综合整治,2018~2019年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:重点行业升级改造 > 企业错峰生产 > "散乱污"企业治理 > 交通运输结构调整 > 民用散煤替代 > 燃煤锅炉综合整治.  相似文献   

11.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

12.
研究4种典型民用煤燃烧排放PM2.5中的碳组分以及水溶性离子含量特点,并通过PAM-OFR(潜在气溶胶质量-氧化流动反应器)模拟了大气老化过程(2d)对煤球与烟煤燃烧PM2.5中碳组分与水溶性离子含量的变化影响。结果表明,烟煤燃放PM2.5中碳组分含量最高,达到57.96%,其EC含量是其他煤种的4.3~9.6倍。民用煤燃烧产生PM2.5中水溶性离子以Na+与SO42-为主,其在总水溶性离子中占比合计约47%~76%。经历了大气老化试验后,煤球与烟煤燃烧排放PM2.5中NH4+和NO3-离子含量大幅增加,与之相比,TC占PM2.5比例分别下降了12.03%与19.99%。  相似文献   

13.
我国燃煤电厂颗粒物排放特征   总被引:1,自引:0,他引:1       下载免费PDF全文
基于我国燃煤电厂(不含港、澳、台数据,下同)的燃烧技术及颗粒物控制技术分类,建立了燃煤电厂颗粒物排放计算方法. 利用该方法,分析了2000─2010年我国燃煤电厂颗粒物排放量及分布特征. 结果表明:我国燃煤电厂颗粒物排放量自2000年起持续增加,于2005年达到最高值(375×104 t),其中PM10、PM2.5排放量分别为237×104、129×104 t;此后逐年降低,2010年降至166×104 t,其中PM10、PM2.5排放量分别降至126×104、85×104 t. 随着静电除尘及湿法脱硫的普及,颗粒物中PM2.5所占比例由2005年的34.3%升至2010年的51.2%. 我国燃煤电厂颗粒物排放地区分布不均衡,2010年内蒙古、山东、河南、江苏、山西和广东六省区的排放量占全国排放总量的44%. PM2.5排放因子也因各省燃煤电厂颗粒物排放控制技术不同而产生差异,其中煤粉炉、循环流化床锅炉的PM2.5排放因子分别为0.35~0.75、0.27~0.90 kg/t. 从机组规模影响来看,单台容量在30×104 kW以下的燃煤机组是粗颗粒(PM>10)的主要来源,而在30×104 kW以上的燃煤机组对PM2.5排放贡献(64.6%)较大,这主要与这类燃煤机组静电除尘和湿法脱硫的安装比例高有关.   相似文献   

14.
为研究京津冀地区民用散煤燃烧大气污染物的排放情况,结合散煤燃烧活动水平与燃用特征,根据排放因子法自下而上建立了2018年京津冀地区民用散煤燃烧污染物排放清单,研究了污染物排放的时空分布特征并使用蒙特卡罗方法对排放清单进行了不确定性分析.结果表明:2018年京津冀地区民用散煤燃烧量共计3799.22万t,PM2.5、CO、SO2、NOx的排放量分别为9.27,341.31,5.17,5.44万t.污染物排放集中在11月份~次年3月份,大多数地区呈现出相同的日排放趋势.8:00、11:00、18:00、21:00左右出现污染物排放峰值,小时排放系数平均值分别为11%,6%,7%,13%.PM2.5排放高值区主要集中在北部、东部及部分南部地区,CO主要集中在北京和天津地区,SO2和NOx主要集中在天津和承德地区.  相似文献   

15.
张凯  吕文丽  王婉  王健  段菁春  邸伟  孟凡 《环境科学研究》2019,32(10):1720-1729
为支撑保定市空气污染控制目标实现,于2014年起开展了保定市大气污染研究工作,明确了保定市大气污染的主要来源与成因,并提出了有针对性的治理对策.结果表明:①保定市大气重污染主要发生在冬季,民用燃煤排放是大气重污染发生的根本原因.2013年12月1日-2014年2月28日冬季ρ(SO2)、ρ(NO2)、ρ(PM10)和ρ(PM2.5)分别为2014年年均值的1.93、1.64、1.46和1.61倍.民用燃煤源占2014年PM2.5全年来源的19.8%,占冬季PM2.5来源的30.9%.②集中供热和清洁取暖措施对空气质量改善效果明显.2015-2018年民用散煤综合整治后,ρ(PM2.5)年均值由2013年的135 μg/m3降至2018年的67 μg/m3,降幅达50.4%,全年重度污染和严重污染天数占比从30.0%降至9.0%.清洁取暖率较高区县的冬季空气综合指数和ρ(PM2.5)明显低于清洁取暖率低的区县.③民用散煤综合整治降低了冬季PM2.5中民用燃煤源占比,优化了能源结构.民用燃煤在PM2.5中占比由2014年冬季的30.9%分别降至2017-2018年冬季的25.0%和2018-2019年冬季的22.0%,煤炭消费量占比由2014年的49.6%降至2017年的38.4%,电力消费量占比由2014年的33.8%升至2017年的39.5%,天然气消费量占比由2014年的2.6%升至2017年的6.8%.总体而言,尽管保定市空气质量得到了一定改善,但总燃煤量占比仍高于北京市(9.8%)和天津市(36.1%),其主城区南部区县仍可进一步提高清洁取暖率,以促进空气质量不断改善.   相似文献   

16.
为精准识别深圳市典型商业、居住与工业混合功能区的PM2.5污染来源,选取深圳市北部地区5个点位于2017年9月~2018年8月全年进行PM2.5的样品采集和组分分析,利用优化的多元线性引擎模型(ME-2)对其主要来源及其时空变化特征进行探索.结果显示,研究区域研究时段的大气PM2.5年均浓度为29.0μg/m3,解析出了SO2二次转化(19.9%)、机动车(15.1%)、生物质燃烧(11.2%)等10种来源,其中SO2二次转化、生物质燃烧、NOx二次转化、VOCs二次转化、工业排放、老化海盐和远洋船舶源具有显著的区域传输特征,而机动车源、燃煤和扬尘具有本地源特征,受到局地排放的影响较大.重污染天气下机动车源、NOx二次转化、工业排放及生物质燃烧源的增加最为显著,加强这些源的控制是此类混合功能区PM2.5污染精细化防治的关键.  相似文献   

17.
石家庄市采暖期大气细颗粒物中PAHs污染特征   总被引:4,自引:2,他引:2       下载免费PDF全文
采集2015年12月-2016年2月采暖期石家庄市文教区、交通密集区、居民区和商业交通混合区大气细颗粒物样品,依据HJ 646-2013《环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法》分析石家庄市大气细颗粒物中PAHs污染水平及分布特征、气象参数与PAHs相关性,并解析PAHs污染来源.结果表明:石家庄市冬季采暖期大气细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)的日均值分别为397.66、349.09和272.35 ng/m3,分别是采暖期前(11月1-15日)的6.16、4.62和4.82倍,并且呈交通密集区>居民区>文教区>商业交通混合区的空间分布特点.相对湿度与细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)均呈显著正相关,R2分别为0.30、0.37和0.33,而风速与三者呈显著负相关,R2分别为-0.39、-0.53和-0.26;PM1.0中具有显著相关的PAHs单体数量多于PM10和PM2.5.根据PAHs环数分布特征及特征化合物比值判断,石家庄市冬季采暖期PAHs污染为燃煤与机动车尾气复合型污染特征,同时餐饮油烟也有一定的贡献.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号