共查询到20条相似文献,搜索用时 71 毫秒
1.
北京地区不同尺度气溶胶中黑碳含量的观测研究 总被引:44,自引:4,他引:44
2003年7月、8月以及11月至2004年1月,在北京大学物理楼顶(北纬39 99°,东经116 31°)使用两台黑碳仪(Aethalometer)和一台TEOM1400a(TaperedElementOscillatingMicrobalance)来观测气溶胶.得到夏季黑碳的平均浓度为8 800μg·m-3,冬季为11 400μg·m-3.在冬季的观测中,在一台黑碳仪的进气口加上不同的切割头,分别得到了全部气溶胶(TSP)、PM10以及PM2 5中的黑碳质量浓度.结果表明,北京冬季的气溶胶中,90%的黑碳存在于PM10中,82 6%的黑碳存在于PM2 5中.比较PM10的浓度和PM10中黑碳的浓度可以看出,PM10中黑碳质量平均占5 11%. 相似文献
2.
为分析华北地区南部城市漯河市秋冬季黑碳(BC)浓度和来源的变化特征,使用7波段黑碳仪(AE33)于2022年9月1日~2023年2月28日在漯河市测量BC浓度,并使用改进后的钾离子动态约束黑碳仪模型进行源解析.此外,对元旦及春节期间烟花爆竹燃放对e BCEC和K+的影响进行分析,以期对华北南部城市的BC污染控制提供合理的建议.结果表明,漯河市秋冬季e BCEC平均浓度为3.62μg/m3,冬季浓度(5.17μg/m3)约为秋季浓度(2.15μg/m3)的2.4倍.e BCEC昼夜浓度变化呈双峰型,峰值出现在8:00和21:00.使用改进后的黑碳仪模型解析出秋冬季BC主要来自化石燃料燃烧的贡献(74.69%±15.63%),其次为生物质燃烧贡献(25.31%±15.63%),控制化石燃料燃烧源对BC污染的改善更加有效.元旦、元宵节和春节等烟花爆竹燃放时段e BCEC的浓度均值分别为11.45、8.42和8.12μg/m3,分别为非烟花爆竹时段的2.6、1.9和1.8倍;春节、元宵节和元旦烟花爆竹燃放时段K+浓度分别为26.... 相似文献
3.
2013年12月,我国中东部地区暴发持续性重污染过程.本研究利用单颗粒黑碳光度计(SP2),分析这次过程中黑碳气溶胶(BC)的质量浓度、混合态以及粒径分布特征.结果表明,观测期间南京BC质量浓度在1.01~14.05μg·m-3之间,平均为4.39μg·m-3,污染较重时呈现夜间高白天低的日变化特征,污染较轻时则为早晚双峰型;用相对包裹层厚度(Dp/Dc)表示BC混合态特征,污染较轻时日变化为凌晨及午后较高,早晚出行高峰期较低,说明在凌晨及午后BC的老化程度较深,早晚机动车排放高峰时段BC多为近地源排放的新鲜粒子.污染较重时Dp/Dc日变化相对平缓,区域性污染特征更为明显并在高相对湿度下体现出气-固转化的过程;BC质量和数谱的粒径分布均为单峰型,数谱峰值粒径在污染较轻时分布在91 nm左右,污染较重时为100 nm,不同污染程度下质量谱峰值粒径均为210 nm,通过对比全球范围的观测结果可以体现出BC一次源的区域性差异.本研究对深入认识长三角地区大气BC污染特征,具有重要的参考价值. 相似文献
4.
利用空中国王飞机平台搭载单颗粒黑碳光度计(SP2)针对北京2016年12月冬季一次污染过程进行了连续观测,阐述了污染发生、发展和消散过程中的黑碳(BC)气溶胶质量浓度、粒径分布和混合状态的变化特征.结果表明,此次污染过程是以PM2.5污染为主的霾污染过程,最大值为432μg/m3.NO2、SO2和CO等气态污染物浓度经过3次污染积累阶段,为PM2.5最终爆发增长提供了物质基础.静稳的大气条件为PM2.5爆发增长提供了动力条件.污染发展过程中BC气溶胶先在地面累积增加,然后向高空传输;清除过程则是高空先被移除,低层缓慢降低.污染发展过程中北京地区黑碳气溶胶在边界层(PBL)浓度变化为先升高后减小,平均浓度为3.45μg/m3,质量中值直径(MMD)范围在190~220nm.随着污染过程的发展,气溶胶迅速老化,PBL内的BC老化比例在一天内可从27%增加到了51%,老化过程使得PM2.5质量浓度爆发增长.污染过程中BC在边界层的垂直演变导致大气加热率发生变化,有利于逆温的维持和发展,加剧了污染物过程. 相似文献
5.
以武汉第七届世界军人运动会期间为研究时段,以机动车辆管控的东湖风景区为研究区域,开展基于自行车车载走航形式的大气污染物浓度实时观测,填补该区域空气质量监测数据空白,为管控措施的效果评估和街区尺度健康风险评估提供精细数据.结果表明,走航观测所测得的ρ(CO)、ρ(NO2)、ρ(PM2.5)和ρ(O3)平均值均高于监测站点,平均超过2.1倍.管控期机动车禁行区ρ(CO)、ρ(BC)、ρ(NO2)、ρ(PM2.5)和ρ(O3)的平均值分别为0.97mg/m3,5.6μg/m3, 57.8μg/m3, 76.3μg/m3和208.3μg/m3,非禁行区分别为1.1mg/m3, 4.7μg/m3, 60.9μg/m3, 72.2μg/m3和197.7μg/m3<... 相似文献
6.
北京典型道路交通环境机动车黑碳排放与浓度特征研究 总被引:1,自引:2,他引:1
本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律.应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度.根据同期观测的气象数据,应用AERMOD模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证.研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子为(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1.全天时均黑碳排放强度为17.9~115.3g·km-1·h-1,其中早(7:00—9:00)晚(17:00—19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1.基于同期监测数据验证,AERMOD模型的模拟效果较好.模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)μg·m-3.由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异.日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)μg·m-3;其次为公交车,达(0.58±0.85)μg·m-3.夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)μg·m-3. 相似文献
7.
为系统了解成都市黑碳气溶胶(BC)的污染特征,利用四川省环境监测站提供的成都市人民南路四段2013年9月至2014年7月逐时BC监测数据,对其浓度进行了统计分析。结果表明:1)BC小时平均浓度变化范围较大,介于0.01~57.83μg/m3,浓度中值(5.17μg/m3)小于平均值(7.32μg/m3),即BC小时浓度具有偏态分布特征。2)BC日均浓度变化范围为2~28.2μg/m3,其浓度日变化在四季均呈明显的单谷型,谷值出现在16:00时附近,表现为从凌晨到10:00时变化较平稳,10:00—16:00时浓度急剧下降,16:00到夜间浓度急剧上升;浓度季变化呈现出冬高夏低,春秋平稳的基本特征。3)秋、冬、春、夏四季BC本底浓度值分别为2.49,5.05,2.89,2.43μg/m3。4)BC质量浓度与PM2.5和PM10变化趋势一致,BC浓度相对颗粒物浓度变化较快,在0.01水平上与PM2.5和PM10均呈显著正相关,相关系数分别为0.657、0.638,与温度、降水和风速均呈负相关,相关系数分别为-0.334,-0.338,-0.202。 相似文献
8.
黑碳(black carbon,BC)影响着全球辐射平衡、大气环境和人体健康,而降水是大气中黑碳的主要去除方式.简述了降水中黑碳的分析方法,重点论述了国内外降水中黑碳的分布特征和对黑碳的去除效率,以及模型和碳同位素示踪技术在识别黑碳来源的应用.结果表明:①单颗粒黑碳光度计因其检测限低、分析速度较快等优点在分析液相介质黑碳中应用较多.②降水中黑碳含量在空间上呈现较大差异,中国降水中黑碳含量较两极地区高2~3个数量级,越靠近两极地区,降水中黑碳含量越低,且工业革命后冰芯中黑碳含量有所增加.由于不同地区工业类型和化石燃料燃烧效率的差异,中国降水中黑碳含量大于东亚其他地区及欧洲地区.长时间(>8 h)降水对黑碳的去除效果较好.③混合单粒子拉格朗日积分轨迹模型、正定矩阵因子分解模型和碳同位素示踪技术相结合能更好地分析降水中黑碳的来源.研究显示,我国降水中黑碳含量较高、污染较重,但对城市降水中黑碳污染的关注还不足,未来应加强对不同地区城市降水中黑碳的观测,充分利用分析模型和碳同位素示踪技术解析降水中黑碳的来源. 相似文献
9.
2021年9月01日-9月29日利用飞行时间质谱在安庆市重点区域进行了VOCs走航监测,对VOCs污染特征进行了分析。结果表明:走航监测期间TVOC平均浓度为286.8μg/m3,夜间TVOC平均浓度整体高于日间,是日间浓度的2.64倍。走航监测共发现45个高值点,其中41个高值点位于高新区,涵盖了14个相关企业。走航车在高值点进行了驻点监测,筛选出VOCs特征因子。走航期间VOCs各类组分占比依次为芳香烃(31.7%)、烷烃(30.4%)、卤代烃(13.7%)、烯烃(11.3%)、含氧含氮烃(11.2%)及有机硫(1.7%)。排名前十的VOCs物种中,正庚烷、甲苯及正辛烷位居前三。各类VOCs物种对OFP的贡献由大到小依次为芳香烃(53.3%)、烯烃(33.6%)、烷烃(11.5%)及卤代烃(1.5%),芳香烃和烯烃对臭氧生成贡献较高,建议将丁烯、甲苯、萘、三甲苯、二乙基苯及戊烯作为安庆市防治臭氧污染的关键物种,减少臭氧污染,为打赢蓝天保卫战提供有力保障。 相似文献
10.
11.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重. 相似文献
12.
利用2012年-2014年在北仑城区的黒碳气溶胶及相关的能见度、SO2、NO2、CO、O3、PM1、PM2.5因子的监测结果,研究区域黒碳气溶胶的污染特征及与其他相关因子的关系等。结果表明,黒碳气溶胶随着浓度的不同组分会有所差异。另外,区域内的黒碳气溶胶的本底值为1.25μg/m3,在国内大城市中处于相对低位,但远高于全球本底值;黒碳气溶胶对消光的贡献为12.13%;与SO2等的相关性分析表明,其与PM2.5、PM 1、NO 2均为强正相关,与SO 2和CO均为中等强度正相关,而与O 3则显示了负的指数相关。 相似文献
13.
14.
黑碳是气溶胶的重要组分,影响着大气环境质量。自20世纪70年代以来,国际上开始探索极地地区黑碳气溶胶的污染特征,并将其列为气候变化的重要研究课题之一。该文选择上海市浦东新区灵山路、青浦区淀山湖、奉贤区海湾作为3个观测区域,分析了2020年1月15日-2月29日(新型冠状病毒肺炎疫情国内爆发期)黑碳的污染特征及其影响因素;结合2015-2020年期间浦东新区、青浦区和奉贤区环境空气质量历史数据,比较了新型冠状病毒肺炎疫情期间黑碳的排放特征。结果显示:疫情爆发期间,黑碳浓度先下降后上升,说明城市交通源排放是黑碳的主要来源;上海市城市大气中黑碳气溶胶浓度除受本地交通源影响较大外,一定程度也受外部输入的影响(包括北方重污染长距离输入和附近省市交通源污染的输入)。同时发现,疫情期间O3作为首要污染物的天数大幅增多,远多于以PM2.5为首要污染物的天数。 相似文献
15.
16.
道路绿化带对街道峡谷内污染物扩散的影响研究 总被引:1,自引:0,他引:1
研究了道路绿化带对街道峡谷内流场与机动车尾气扩散的影响特征.假设绿化带树冠为均匀多孔介质,采用压力损失系数表征树冠对空气流动的阻碍作用,建立可用于数值模拟的绿化带多孔介质物理模型.采用稳态k-ε湍流模型结合组分输运方程模拟道路中央有绿化带街道峡谷内的尾气扩散过程,模拟结果与风洞试验数据对比吻合较好.分析发现,有绿化带街道峡谷内存在一个围绕树冠的顺时针旋涡,旋涡中心略偏向右上方,背风面污染物浓度显著增大,较无绿化带的污染物平均浓度增长46.0%.进一步模拟了不同绿化带树冠高度情况下街道峡谷内流场与浓度场,发现随着树冠位置的上升,峡谷内流场旋涡中心逐步上移且偏向迎风建筑物,峡谷内整体气流速度下降,污染物浓度逐步升高,树冠底部高度为8 m时其污染物浓度可达4 m时的2倍多;尤其是当树冠顶部超过屋顶高度时,峡谷内污染物总体浓度增长迅速. 相似文献
17.
上海城市街道峡谷道路绿化模式研究 总被引:2,自引:0,他引:2
街道峡谷在上海城市中普遍存在,街道峡谷中污染气体的扩散受到屋顶风向、风速、高宽比、峡谷两侧建筑物的对称性、高度分布和街区形状等因素的影响。文章对适合于不同街道峡谷形式的、较为典型的道路绿化模式进行了研究。结果表明,上海城市街道峡谷中的道路绿化模式可归纳为:梯级递进式、斑块复合式、疏朗开敞式、模纹花镜式和独立行道树式5种。当街道峡谷与主导风垂直:(1)街道峡谷的W/H>5且为平行型峡谷时,绿化模式应采用梯级递进式或疏朗开敞式;(2)街道峡谷的W/H为0.6~5且为平行型峡谷时,绿化模式在迎风侧采用流朗开敞式、背风侧采用模纹花镜式,或者两侧都采用模纹花镜式;(3)街道峡谷的W/H<0.6且为平行型峡谷时,绿化模式应采用模纹花镜式或独立行道树式;(4)街道峡谷的W/H<0.6且为递升型峡谷时,绿化模式在迎风侧采用斑块复合式或模纹花镜式,背风侧采用模纹花镜式或独立行道树式;(5)街道峡谷的W/H<0.6且为递降型峡谷时,绿化模式可采用模纹花镜式或独立行道树式;当街道峡谷与主风向平行:宽、高比大的街道绿化模式应采用梯级递进式或斑块复合式,当街道峡谷的高度是宽度的倍数时,道路绿化宜采用疏朗开敞式或独立行道树式。 相似文献
18.
日光照射对街道峡谷污染物扩散影响的研究 总被引:1,自引:0,他引:1
为了分析日光照射对城市街道峡谷机动车污染物扩散的影响.对街道峡谷日光照射的物理模型进行了简化.采用数值模拟技术对日光照射下的城市街道峡谷内气体流动和机动车污染物扩散规律进行了研究。结果表明.在一定条件下。日光照射是研究城市街道峡谷内污染物扩散必须考虑的因素。在污染物扩散受日光照射影响较大的街道峡谷内部.当街道地面或迎风面受日光照射时.街道峡谷内部将出现2个方向相反的漩涡,并导致迎风面建筑物一侧的污染物浓度升高.这与不计日光照射的特征有显著的不同。 相似文献
19.
不同车速下,对四种通风模式(A关闭通风口和风扇、B关闭通风口打开风扇、C打开通风口关闭风扇、D打开通风口和风扇)车内二氧化碳浓度进行分析研究。通风口关闭的状态,无论是否打开风扇及车速快慢,车内CO2浓度严重超标。通风口打开:不开风扇,以50km/h速度行驶,车内CO2浓度高于标准限量;速度提高到80km/h,车内CO2浓度可低于标准限量,通风口和缝隙的换气可以保障车内的空气质量;而打开风扇可以有效排除车内污染物。车速提高,各种通风模式的换气量都增加,属于缝隙换气贡献的比例增加,属于风扇换气贡献的比例减小,属于通风口换气贡献比例变化不大。基于研究结果,提出了一些减少车内污染的通风方式建议。 相似文献
20.
采用Fluent软件,选用RNG k-ε湍流模型,对长高比为5的街道峡谷(简称街谷)在0°~90°风向下流场和污染物浓度场进行了数值模拟. 结果表明: 0°~75°风向时,街谷内流场呈明显的三维特性,90°风向时,流动表现出中长街谷的二维特点;风向对街谷内壁面污染物浓度的分布有显著影响,90°风向下的街谷壁面浓度最大,其次是45°风向,其余风向下的相对较小,污染物浓度的计算值与风洞试验值在趋势上吻合较好;壁面污染物浓度的分布由街谷内长度方向漩涡、来流冲角产生的进口回流及沿长度方向的流动所决定,壁面浓度的分布差异均可从附近的流场获得解释. 街道峡谷内长度方向的漩涡模拟过强会导致地面附近污染物浓度的计算值偏离试验值. 相似文献