首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
Capped waste sites often are vegetated with commercial turf grasses to increase evapotranspiration and prevent erosion and possible exposure of the barrier. Fertilizer, frequent watering, and mowing may be required to establish the turf grass and prevent invasion by trees and shrubs. Oldfield vegetation of grasses and forbs is a possible sustainable alternative to turf grass communities. To determine if oldfield vegetation can establish on caps, we (1) compared establishment of a dominant oldfield grass and a commercial turf grass under different combinations of new closure cap management: spring or summer planting and presence or absence of amendments to alleviate drought (watering, mulch) or increase soil fertility (fertilizer, lime, a nitrogen-fixing legume); (2) surveyed existing caps to determine if oldfield species establish naturally; and (3) performed a greenhouse experiment to compare growth of two native grasses under low and amended (added water, soil nutrients) conditions. Both the commercial grass and oldfield species established under new cap conditions; fertilizer, water, and mulch improved vegetation establishment in spring or summer, but legumes decreased grass cover. In the greenhouse, both native grasses grew best with amendments; however, substantial stem and root length were obtained with no fertilizer and only once-weekly watering. Existing vegetated caps supported planted grasses and naturally established oldfield species. Overall, the results indicate native grasses can establish on new caps and oldfields can serve as a management model; further work is needed to determine the management strategy to maintain herbaceous vegetation and slow woody species invasion.  相似文献   

2.
Domestic animals potentially affect the reproductive output of plants by direct removal of aboveground plant parts but also could alter the structure and fertility of the upper soil and the integrity of biological crusts through trampling. We asked whether sheep selectivity of plant patches along grazing paths could lead to negative changes in biological crusts and soil seed banks. We randomly selected ten floristically homogeneous vegetation stands distributed across an area (1250 ha) grazed by free ranging sheep. Vegetation stands were differently selected by sheep as estimated through sheep-collaring techniques combined with remote imagery mapping. At each stand, we extracted 15 paired cylindrical soil cores from biological crusts and from neighboring soil without crusts. We evaluated the crust cover enclosed in each core and incubated the soil samples at field capacity at alternating 10-18 °C during 24 months. We counted the emerged seedlings and identified them by species. Sheep selectivity along grazing paths was largest at mid-distances to the watering point of the paddock. Increasing sheep selectivity was associated with the reduction of the cover of biological crusts and the size and species number of the soil seed bank of preferred perennial grasses under biological crusts. The size of the soil seed bank of annual grasses was reduced with increasing sheep selectivity under both crust and no crust soil conditions. We did not detect changes in the soil seed banks of less- and non- preferred species (shrubs and forbs) related to sheep selectivity. Our findings highlight the negative effects of sheep selectivity on biological crusts and the soil seed bank of preferred plant species and the positive relationship between biological crusts and the size of the soil seed bank of perennial grasses. Accordingly, the state of conservation of biological crusts could be useful to assess the state of the soil seed banks of perennial grasses for monitoring, conservation and planning the sustainable management of grazing lands.  相似文献   

3.
The rationale for this study came from observing grazing dairy cattle dropping freshly harvested plant material onto the soil surface, hereafter called litter-fall. The Intergovernmental Panel on Climate Change (IPCC) guidelines include NO emissions during pasture renewal but do not consider NO emissions that may result from litter-fall. The objectives of this study were to determine litter-fall rates and to assess indicative NO emission factors (EFs) for the dominant pasture species (perennial ryegrass [ L.] and white clover [ L.]). Herbage was vacuumed from intensively managed dairy pastures before and after 30 different grazing events when cows (84 cows ha) grazed for 24 h according to a rotational system; the interval between grazing events ranged from 21 to 30 d. A laboratory incubation study was performed to assess potential EF values for the pasture species at two soil moisture contents. Finely ground pasture material was incubated under controlled laboratory conditions with soil, and the NO emissions were measured until rates returned to control levels. On average, pre- and postgrazing dry matter yields per grazing event were 2516 ± 636 and 1167 ± 265 kg DM ha (±SD), respectively. Pregrazing litter was absent, whereas postgrazing fresh and senesced litter-fall rates were 53 ± 24 and 19 ± 18 kg DM ha, respectively. Annually, the rotational grazing system resulted in 12 grazing events where fresh litter-fall equaed to 16 kg N ha yr to the soil. Emission factors in the laboratory experiment indicated that the EF for perennial ryegrass and white clover ranged from 0.7 to 3.1%. If such EF values should also occur under field conditions, then we estimate that litter-fall induces an NO emission rate of 0.3 kg NO ha yr. Litter-fall as a source of NO in grazed pastures requires further assessment.  相似文献   

4.
Summary The land uses that now predominate in Brazil's Amazon Region are unlikely to produce sustainable yields. They also tend to close off potentially sustainable alternative uses. Cattle pasture — either productive or abandoned — now occupies most deforested land. Small farmers plant pasture after using the land for a year or two under annual crops, while large cattle ranches plant pasture directly after clearing. The principal motive for planting pasture is often its low cost and high effectiveness as a means of securing speculative land claims — not beef production.Pasture and cattle yields are low and, after use for about a decade, the planted grasses are out-competed by secondary forest species or inedible grasses. Depletion of available phosphorus in the soil is a major cause of yield decline; Brazil's relatively modest phosphorus deposits, virtually all of which are outside of Amazonia, make fertiliser use not feasible for the vast areas now rapidly being converted to pasture. Converting a substantial portion of Amazonia to pasture would have potential climatic effects. Areas that can be planted in annual and perennial crops are restrained by world markets, as well as by soil quality and Brazil's limited stocks of the inputs needed for intensive agriculture.Recent initiatives for agricultural-ecological in Brazil's Amaoznian states could be a first step toward more rational land use. Immediate measures are needed to slow deforestation, to discourage unsustainable uses and to make sustainable alternatives profitable.Professor Philip Fearnside is currently Research Professor in the Department of Ecology at the National Institute for Research in the Amazon. The paper has been modified from an earlier version presented at the International Symposium on Alternatives to Deforestation held in Belém, Pará, Brazil in January 1988.  相似文献   

5.
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.  相似文献   

6.
Riparian zones are recognized as landscape features that buffer streams from pollutants, particularly nitrogen. The objectives of this experiment were to (i) assess denitrification activity within a riparian zone and (ii) determine the influence of physical, chemical, and landscape features on denitrification. This experiment was conducted from 1994 to 1997 in North Carolina on a riparian zone contiguous to a spray field that was heavily loaded with swine lagoon wastewater. Denitrification enzyme activity (DEA) was measured on soils collected from (i) the soil surface, (ii) midway between the soil surface and water table, and (iii) above the water table. The DEA ranged from 3 to 1660 microg N(2)O-N kg(-1) soil h(-1). The DEA was highest next to the stream and lowest next to the spray field. Nitrate was found to be the limiting factor for denitrification. The DEA generally decreased with soil depth; means for the surface, middle, and bottom depths were 147, 83, and 67 microg N(2)O-N kg(-1) soil h(-1), respectively. These DEA values are higher than those reported for riparian zones adjoining cropland of the southeastern United States, but are lower than those reported for a constructed wetland used for treatment of swine wastewater. Regression analysis indicated that soil total nitrogen was the highest single factor correlated to DEA (r(2) = 0.65). The inclusion of water table depth, soil depth, and distance from the spray field improved the R(2) to 0.86. This riparian zone possessed sufficient soil area with high denitrifying conditions to be a significant factor in the removal of excess nitrogen in the ground water.  相似文献   

7.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

8.
ABSTRACT: Results of a study to determine the relationship between physical characteristics of Adirondack lakes and variations in peak boat-use intensity indicated that 69 percent of the variation in peak use can be accounted for by the number of public and commercial boat-launching facilities per mile of lake shoreline. Other lake characteristics related to peak boat use were: the number of commercial overnight accommodations available, number of boat slips, lake size, and miles of lake shoreline. Lake characteristics not related to peak use were: accessibility, configuration, tent spaces available, surrounding landscape quality, volume of traffic and availability of other lakes. This information should provide recreation managers and planners with a better understanding of factors related to variation in peak boating-use periods.  相似文献   

9.
To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (Corg) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.  相似文献   

10.
Agricultural drought differs from meteorological, hydrological, and socioeconomic drought, being closely related to soil water availability in the root zone, specifically for crop and crop growth stage. In previous studies, several soil moisture indices (e.g., the soil moisture index, soil water deficit index) based on soil water availability have been developed for agricultural drought monitoring. However, when developing these indices, it was generally assumed that soil water availability to crops was equal throughout the root zone, and the effects of root distribution and crop growth stage on soil water uptake were ignored. This article aims to incorporate root distribution into a soil moisture‐based index and to evaluate the performance of the improved soil moisture index for agricultural drought monitoring. The Huang‐Huai‐Hai Plain of China was used as the study area. Overall, soil moisture indices were significantly correlated with the crop moisture index (CMI), and the improved root‐weighted soil moisture index (RSMI) was more closely related to the CMI than averaged soil moisture indices. The RSMI correctly identified most of the observed drought events and performed well in the detection of drought levels. Furthermore, the RSMI had a better performance than averaged soil moisture indices when compared to crop yield. In conclusion, soil moisture indices could improve agricultural drought monitoring by incorporating root distribution.  相似文献   

11.
Ensuring that new buildings do not interfere with the recreational and protective functions of the natural system and that the buildings will be useful long enough to protect the investment are among long-term solutions to coastal erosion. We propose that coastal cliff management districts be established for management of eroding high relief shorelines. Such districts would include an imminent failure zone, in which bluff retreat is possible at any time; a migration zone, which allows for long-term shoreline retreat; and a stability control zone in which activities affecting bluff erosion are restricted. Procedures are described for delineating these zones based on geomorphic criteria. If these land use controls are implemented, some shorefront development can be accommodated while retaining valuable characteristics of the natural system.  相似文献   

12.
Long-term cropping system effects on carbon sequestration in eastern Oregon   总被引:1,自引:0,他引:1  
Soil organic carbon (SOC) has beneficial effects on soil quality and productivity. Cropping systems that maintain and/or improve levels of SOC may lead to sustainable crop production. This study evaluated the effects of long-term cropping systems on C sequestration. Soil samples were taken at 0- to 10-, 10- to 20-, 20- to 30-, and 30- to 40-cm soil depth profiles from grass pasture (GP), conventional tillage (CT) winter wheat (Triticum aestivum L.)-fallow (CTWF), and fertilized and unfertilized plots of continuous winter wheat (WW), spring wheat (SW), and spring barley (Hordeum vulgare L.) (SB) monocultures under CT and no-till (NT). The samples were analyzed for soil organic matter (SOM) and SOC was derived. Ages of experiments ranged from 6 to 73 yr. Compared to 1931 SOC levels (initial year), CTWF reduced SOC by 9 to 12 Mg ha(-1) in the 0- to 30-cm zone. Grass pasture increased SOC by 6 Mg ha(-1) in the 0- to 10-cm zone but decreased SOC by 3 Mg ha(-1) in the 20- to 30-cm zone. Continuous CT monocultures depleted SOC in the top 0- to 10-cm zone and the bottom 20- to 40-cm zone but maintained SOC levels close to 1931 SOC levels in the 10- to 20-cm layer. Continuous NT monocultures accumulated more SOC in the 0- to 10-cm zone than in deeper zones. Total SOC (0- to 40-cm zone) was highest under GP and continuous cropping and lowest under CTWF. Fertilizer increased total SOC only under CTWW and CTSB by 13 and 7 Mg ha(-1) in 13 yr, respectively. Practicing NT for only 6 yr had started to reverse the effect of 73 yr of CTWF. Compared to CTWF, NTWW and NTSW sequestered C at rates of 2.6 and 1.7 Mg ha(-1) yr(-1), respectively, in the 0- to 40-cm zone. This study showed that the potential to sequester C can be enhanced by increasing cropping frequency and eliminating tillage.  相似文献   

13.
Abstract: Soil moisture is an important hydrological variable in reforestation practices in a water‐limited region of the Loess Plateau of northwestern China. The objective of this study was to quantify the spatial dynamics of soil moisture on a complex terrain. During 2004‐2006, a total of 313 sample points in two kinds of grid (2 × 2 m and 20 × 20 m) were arranged for soil moisture measurements (two soil layers: 0‐30 and 30‐60 cm) with Time Domain Reflectometry. The geostatistical properties of soil moisture patterns, the variance and correlation structure of the soil moisture, and the effects of terrain factors on soil moisture were analyzed. The results suggested that our sampling grid captured the spatial variability of soil moisture distributions for this complex terrain. Principal Component Analysis and Cluster Analysis statistics showed that soil moisture decreased as slope gradient increased; that sunny aspects (112.5°‐292.5°) had relatively lower soil moisture than did shady aspects (292.5°‐112.5°); that soil moisture was lowest in the SWW direction and highest in the NWN direction; and that hillslope aspect was the main factor affecting soil moisture in the 0‐ to 30‐cm soil layer, whereas the main factor for the 30‐ to 60‐cm layer was slope gradient. It was found that the relative values of soil moisture for steep slopes (>36%) with shady aspect (292.5°‐112.5°), gentle slopes (<36%) with sunny aspect (112.5°‐292.5°), and steep slopes with sunny aspect were 99, 82, and 80, respectively – assuming a soil moisture value of 100 for gentle slopes with shady aspect. The results of this study are expected to be relevant to and useful for reforestation planning and design, parameterization of distributed hydrology models, and land productivity assessment in the study region.  相似文献   

14.
The effects of pasture management, season and soil nutrient status on crude protein (CP) and macro mineral concentration of native pasture was studied in the Vertisol areas of the central Ethiopian highland. Soil and herbage samples from 18 continuously grazed (CG) and 12 seasonally grazed (SG) pasture sites were analyzed for N, P, Ca, Mg, K and Na. Soil and dry season CG pasture samples were collected in January and February 2001 (dry season: November-February), while wet season CG and SG pasture samples were collected during September 2001 (wet season: April-October). The Potassium concentration (2.55%) of mixed herbage samples from SG pasture exceeded the K values (1.80%) from CG pasture (P?相似文献   

15.
太湖生态模拟系统构建与应用   总被引:2,自引:0,他引:2  
湖泊生态系统模拟在湖泊富营养化研究中发挥着越来越重要的作用,是湖泊生态生态系统管理的重要手段。湖泊生态系统模型及其相关软件的发展经历了从简单的回归模型、单一的营养盐平衡模型到目前复杂的生态系统动力学模型。本文详细的介绍了湖泊生态模拟的原理、结构框架设计、功能、运行环境及参数等特性,借助太湖有关资料建立了太湖生态系统模拟模型,并对该模型进行了验证分析,验证结果表明该模型在太湖有很好的适应性。  相似文献   

16.
In 1986 and 1987, a study on factors governing revegetation on ski grounds was conducted at Teine ski ground (built in 1971) located near the city of Sapporo in northern Japan. Soil movement, slope gradient, distance from forest edge, vegetation cover, and number of species on the ski ground were examined. Although artificial sowing of exotic plants was undertaken in the whole ground surface at the time of opening, bare land occurred in ca. 50% of surveyed plots and the ski ground was mostly covered with native plants. The number of species was positively correlated to vegetation cover, which was low in the sites where intensive soil erosions occurred in winter. A principal component analysis of plant species distinguished three major groups of factors, i.e., vegetation cover (first axis, contribution rate 30.3%), soil erosion in winter and slope gradient (second, 23.1%), and distance from forest edge (third, 16.3%). The vegetation characteristics on the ski ground were not determined by a single environmental gradient but by the combination of factors described above. In particular, soil movements, which are mostly derived from snowmelt, are considered to be the initiator of vegetation changes.  相似文献   

17.
Spray irrigation of forested land can provide an effective system for nutrient removal and treatment of municipal wastewater. Evolution of N2 + N2O from denitrifying activity is an important renovation pathway for N applied to forested land treatment systems. Federal and state guidance documents for design of forested land treatment systems indicate the expected range for denitrification to be up to 25% of applied N, and most forest land treatment systems are designed using values from 15 to 20% of applied N. However, few measurements of denitrification following long-term wastewater applications at forested land treatment sites exist. In this study, soil N2 + N2O-N evolution was directly measured at four different landscape positions (hilltop, midslope, toe-slope, and riparian zone) in a forested land treatment facility in the Georgia Piedmont that has been operating for more than 13 yr. Denitrification rates within effluent-irrigated areas were significantly greater than rates in adjacent nonirrigated buffer zones. Rates of N2 + N2O-N evolved from soil in irrigated forests ranged from 5 to 10 kg ha(-1) yr(-1) N on the three upland landscape positions and averaged 38 kg ha(-1) yr(-1) N within the riparian zone. The relationship between measured riparian zone denitrification rates and soil physical and chemical properties was poor. The best relationship was with soil temperature, with an r2 of 0.18. Overall, on a landscape position weighted basis, only 2.4% of the wastewater-applied N was lost through denitrification.  相似文献   

18.
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0–10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.  相似文献   

19.
The objective of our study was to assess the response of physical (aggregate stability and bulk density) and biological (enzyme activities and microbial biomass) soil quality indicators to the adoption of agroecological management practices, such as the planting of forage species (forage area) and the rotation of local crops (polycrop area), carried out in a representative tropical pasture on an integrated livestock–crop farm. The pasture system was used as control (pasture area). In all three areas, the values of water-soluble C were higher in the rainy season compared to the dry season. Pasture and forage areas had the highest percentage of stable aggregates in the rainy season, while polycrops developed soils with less stable aggregates. Soil bulk density was lower in the pasture and forage areas than in the polycrop area. In the pasture area, the microbial biomass C values, dehydrogenase, urease, protease-BAA, acid phosphatase, and -glucosidase activities were higher than in the forage and polycrop areas, particularly in the dry season. The highest increase in the microbial biomass C in the rainy season, with respect to the dry season, was recorded in the pasture area (about 1.2-fold). In conclusion, the planting of forage species can be considered an effective practice for carrying out sustainable, integrated livestock–crop systems, due to its general maintenance of soil quality, while the adoption of polycrop rotations appears to be less favorable because it decreases soil quality.  相似文献   

20.
As woody plants encroach into grasslands, grass biomass, density and cover decline as wood plant biomass, density and cover increase. There is also a shift in location of the biomass from mostly belowground in the grasslands to aboveground in the woodlands. In addition, species richness and diversity change as herbaceous species are replaced by woody species. This is not a new phenomenon, but has been going on continually as the climate of the Planet has changed. However, in the past 160 years the changes have been unparalleled. The process is encroachment not invasion because woody species that have been increasing in density are native species and have been present in these communities for thousands of years. These indigenous or native woody species have increased in density, cover and biomass because of changes in one or more abiotic or biotic factors or conditions. Woody species that have increased in density and cover are not the cause of the encroachment, but the result of changes of other factors. Globally, the orbit of the Earth is becoming more circular and less elliptical, causing moderation of the climate. Additional global climate changing factors including elevated levels of CO2 and parallel increases in temperature are background factors and probably not the principal causes directing the current wave of encroachment. There is probably not a single reason for encroachment, but a combination of factors that are difficult to disentangle. The prime cause of the current and recent encroachment appears to be high and constant levels of grass herbivory by domestic animals. This herbivory reduces fine fuel with a concomitant reduction in fire frequency or in some cases a complete elimination of fire from these communities. Conditions would now favor the woody plants over the grasses. Reduced grass competition, woody plant seed dispersal and changes in animal populations seem to modify the rate of encroachment rather than being the cause. High concentrations of atmospheric CO2 are not required to explain current woody plant encroachment. Changes in these grassland communities will continue into the future but the specifics are difficult to predict. Density, cover and species composition will fluctuate and will probably continue to change. Increased levels of anthropogenic soil nitrogen suggest replacement of many legumes by other woody species. Modification and perhaps reversal of the changes in these former grassland communities will be an arduous, continuing and perhaps impossible management task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号