首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Burns PE  Hyun S  Lee LS  Murarka I 《Chemosphere》2006,63(11):1879-1891
Leachate derived from unlined coal ash disposal facilities is a potential anthropogenic source of arsenic to the environment. To establish a theoretical framework for predicting attenuation of arsenic by soils subject to ash landfill leachate, which is typically enriched in calcium and sulfate, the adsorption of As(V) and As(III) was characterized from 1 mM CaSO4 for 18 soils obtained down-gradient from three ash landfill sites and representing a wide range in soil properties. As(V) consistently exhibited an order of magnitude greater adsorption than As(III). As(V) adsorption was best described by coupling pH with 15 s DCB-Fe (R2 = 0.851,  = 0.001), although pH coupled to clay, DCB-Fe, or DCB-Al also generated strong correlations. For As(III), pH coupled to Ox–Fe (R2 = 0.725,  = 0.001) or Ox–Fe/Al (R2 = 0.771,  = 0.001) provided the best predictive relationships. Ca2+ induced increases in As(V) adsorption whereas sulfate suppressed both As(V) and As(III) adsorption. Attenuation of arsenic from ash leachate agreed well with adsorption measured from 1 mM CaSO4 suggesting that the use of 1 mM CaSO4 in laboratory adsorption tests is a reasonable approach for estimating arsenic behavior in soils surrounding ash landfills. We also showed that the impact of leachate-induced changes in soil pH over time may not be significant for As(V) adsorption at pH < 7; however, As(III) adsorption may be impacted over a wider pH range especially if phyllosilicate clays contribute significantly to adsorption. The benefits and limitations of predicting arsenic mobility using linearized adsorption coefficients estimated from nonlinear adsorption isotherms or from the relationships generated in this study are also discussed.  相似文献   

2.
The paper deals with the toxicity of a surfactant-based oil dispersant to the ATPase activities of two naupliar stages of Artemia (instar I & II). Both instars were exposed to sub-lethal and lethal concentrations derived from acute toxicity data. The chosen concentrations were near to LOECs and NOECs. An eightfold difference indicated between the instars was instar-exposure time dependent. The most prominent effects were the inhibition and the stimulation of Na+/K+-ATPase and Mg2+-ATPase activities, respectively. The cause of these effects was related to the dispersant components, the surfactants. The pattern stimulation/inhibition of Mg2+-ATPase and Na+/K+-ATPase activities could be used to indicate toxic stress by surfactant-based oil dispersants since previous studies with other contaminants have shown different ATPase activity patterns.  相似文献   

3.
The air pollution is the one of the most important environmental problems in Erzurum, situated in the eastern of Turkey, during winter periods. The unfavorable climate as well as the city’s topography, and inappropriate urbanization cause serious air pollution problems. The air pollutant concentrations in a city have a close relationship with its meteorological parameters. In the present study, the relationship between daily average total suspended particulate (TSP) and sulphur dioxide (SO2) concentrations with meteorological factors, such as wind speed, temperature, relative humidity, pressure and precipitation, in 1995–2002 winter seasons was statistically analyzed using the stepwise multiple linear regression analysis. According to the results obtained through analysis, higher TSP and SO2 concentrations are strongly related to colder temperatures, lower wind speed, higher pressure system and weakly lower precipitation and higher relative humidity. The statistical models of SO2 and TSP including meteorological parameters gave R2 of 0.74 and 0.88, respectively. Furthermore, the correlation between the previous day’s SO2, TSP concentrations and actual concentrations of these pollutants on that day was investigated and found as 0.84 and 0.53, respectively. In order to develop this model, previous day’s SO2 and TSP concentrations were added to the equations. The new model for SO2 enhanced considerably (R2 = 0.92), but for TSP new model was not enhanced (R2 = 0.89).  相似文献   

4.
Miretzky P  Bisinoti MC  Jardim WF 《Chemosphere》2005,60(11):1583-1589
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process.  相似文献   

5.
Lo W  Chua H  Lam KH  Bi SP 《Chemosphere》1999,39(15):135-2736
The removal of lead from aqueous solutions by adsorption on filamentous fungal biomass was studied. Batch biosorption experiments were performed to screen a series of selected fungal strains for effective lead removal at different metal and biomass concentrations. Biosorption of the Pb2+ ions was strongly affected by pH. The fungal biomass exhibited the highest lead adsorption capacity at pH 6. Isotherms for the biosorption of lead on fungal biomass were developed and the equilibrium data fitted well to the Langmuir isotherm model. At pH 6, the maximum lead biosorption capacity of Mucor rouxii estimated with the Langmuir model was 769 mg/g dry biomass, significantly higher than that of most microorganisms. Biomass of Mucor rouxii showed specific selectivity for Pb2+ over other metals ions such as Zn2+. Ni2+ and Cu2+. This fungal strain may be applied to develop potentially cost-effective biosorbent for removing lead from effluents. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Pb2+ has exchanged with K+ and Ca2+ on the cell wall of Mucor rouxii, thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this fungal strain.  相似文献   

6.
Wang D  He L  Shi X  Wei S  Feng X 《Chemosphere》2006,64(11):1845-1854
An investigation was conducted to estimate mercury emission to the atmosphere from different environmental surfaces and to assess its contribution to the local mercury budget in Chongqing, China. Mercury flux was measured using dynamic flux chamber (DFC) at six soil sites of three different areas (mercury polluted area, farmland and woodland) and four water surfaces from August 2003 to April 2004. The mercury emission fluxes were 3.5 ± 1.2–8.4 ± 2.5 ng m−2 h−1 for three shaded forest sites, 85.8 ± 32.4 ng m−2 h−1 for farming field, 12.3 ± 9.8–733.8 ± 255 ng m−2 h−1 for grassland sites, and 5.9 ± 12.6–618.6 ± 339 ng m−2 h−1 for water surfaces. Mercury exchange fluxes were generally higher from air/water surfaces than from air/soil surfaces. The mercury negative fluxes were found in tow soil sites at overcast days (mean = −6.4 ± 1.5 ng m−2 h−1). The diurnal and seasonal variations of mercury flux were observed in all sites. The mercury emission responded positively to the solar radiation, but negatively to the relative humidity. The mercury flux from air/soil surfaces was significantly correlated with soil temperature, which was well described by an Arrhenius-type expression with activation energy of 31.1 kcal mol−1. The annual mercury emission to the atmosphere from land surface is about 1.787 t of mercury in Chongqing.  相似文献   

7.
Yu K  DeLaune RD  Boeckx P 《Chemosphere》2006,65(11):2449-2455
Wetland loss along the Louisiana Gulf coast and excessive nitrate loading into the Gulf of Mexico are interrelated environmental problems. Nitrate removal by soil denitrification activity was studied in a ponded freshwater marsh receiving diverted Mississippi River water for the purpose of reversing or slowing wetland loss. Labeled 15N-nitrate was applied at 3.8 g N m−2 into four replicate study plots after removing above ground vegetation. Nitrogen gas (N2) and nitrous oxide (N2O) emissions from the plots were determined by isotope ratio mass spectrometry (IRMS). Nitrous oxide emissions were also compared with the results determined by gas chromatograph (GC). Results showed that it took 2 weeks to remove the added nitrate with N2O emission occurring over a period of 4 d. The apparent denitrification dynamics were assumed to follow the Michaelis–Menten equation. The maximum denitrification rate and Km value were determined as 12.6 mg N m −2 h−1, and 6.5 mg N l−1, respectively. Therefore the maximum capacity for nitrate removal by the marsh soil would be equivalent to 110 g N m−2 yr−1, with more than 30% of nitrogen gas evolved as N2O. For typical nitrate concentrations in Mississippi River water of about 1 mg N l−1, nitrate would be removed at a rate of 14.7 g N m−2 yr−1 with N2O emission about 1.5%. A denitrification dynamic model showed that the efficiency of nitrate removal would largely depend on the water discharge rate into the ponded wetland. Higher discharge rate will result in less retention time for the water in the marsh where nitrate is denitrified.  相似文献   

8.
Verge C  Moreno A  Bravo J  Berna JL 《Chemosphere》2001,44(8):1749-1757
In the present work, the influence of Ca2+ concentration on the toxicity of single cut linear alkylbenzene sulfonate (LAS) homologues was studied. Precipitation boundary diagrams for each homologue were obtained, indicating turbid and clear zones depending on the LAS and Ca2+ concentrations. The separation between transparent and turbid zones is given by the so-called precipitation line. LAS toxicity to Daphnia magna was determined at concentrations close to this precipitation line. It was observed that when Ca(LAS)2 precipitation progresses, LAS bioavailability decreases for test animals, and the toxicity diminishes even at high nominal LAS concentrations. According to the “free ion activity model” (FIAM), the toxicity of a given chemical compound is mainly due to the ionic species (Ca2+–LAS) and not due to the precipitated molecule, Ca(LAS)2. The significance of the present study is in connection with the assessment of LAS sorption/precipitation studies in soils and sediments, where in situ toxicity is strongly influenced by Ca2+/Mg2+ ions, according to the results presented in this work.  相似文献   

9.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

10.
A series of aromatic heterocyclic and hydrocarbon compounds were tested for toxicity and biotransformation potential against two contrasting lux-marked whole-cell microbial biosensors. Toxicity was determined by inhibition of light output of a Pseudomonas fluorescens construct that expresses lux constitutively. Biotransformation was tested by increase in light output of P. fluorescens HK44 (pUTK21), which expresses lux when in the presence of a metabolic intermediate (salicylate). The data were then modelled against physical/chemical properties of the compounds tested to see if quantitative structure–activity relationships (QSARs) could be derived. Toxicity was found to be accurately predicted by log Kow (R2=0.95, Q2=0.88), with the basic (pyridine-ring containing) heterocycles modelled separately. The biotransformation data were best modelled using lowest unoccupied molecular orbital (LUMO) energies (R2=0.90, Q2=0.87).  相似文献   

11.
UV/TiO2/H2O2, UV/TiO2 and UV/H2O2 were compared as pre-treatment processes for the detoxification of mixtures of 4-chlorophenol (4CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) prior to their biological treatment. When each chlorophenol was initially supplied at 50 mg l−1, UV/TiO2/H2O2 treatment supported the highest pollutant removal, COD removal, and dechlorination efficiencies followed by UV/TiO2 and UV/H2O2. The remaining toxicity to Lipedium sativum was similar after all pre-treatments. Chlorophenol photodegradation was always well described by a first order model kinetic (r2 > 0.94) and the shortest 4CP, DCP, TCP and PCP half-lives of 8.7, 7.1, 4.5 and 3.3 h, respectively, were achieved during UV/TiO2/H2O2 treatment. No pollutant removal was observed in the controls conducted with H2O2 or TiO2 only. Inoculation of all the photochemically pre-treated mixtures with activated sludge microflora was followed by complete removal of the remaining pollutants. Combined UV/TiO2/H2O2-biological supported the highest detoxification, dechlorination (99%) and COD removal (88%) efficiencies. Similar results were achieved when each chlorophenol was supplied at 100 mg l−1. COD and Cl mass balances indicated UV, UV/H2O2, and UV/TiO2 treatments lead to the formation of recalcitrant photoproducts, some of which were chlorinated.  相似文献   

12.
To elucidate mechanisms of Cr3+ sorption onto the unaltered solid natural organic matter, the comparative studies of this ion binding from a solution at pH 4.0 onto three selected particle size fractions: 2000–1000 μm, 630–200 μm and 63–20 μm of markedly different HS content and structure, separated by a wet sieving from an overall sample of peat (Brushwood Peat Humus) were carried out. Comparable patterns of COOH groups and CECt confirmed that for cation exchange capacity were responsible mainly cations connected with COO functional groups. It was though found that aliphatic acids in the solid state did not take part in Cr3+ binding, thus the finest studied fraction 63–20 μm of the highest contents of functional groups showed the lowest sorption capacity for Cr3+, while similar patterns of sorbed Cr3+, soluble HS content and base CEC0 indicated that these parameters were directly interrelated. The base ion exchange processes determined by CEC0 (with Ca2+ as a predominant exchangeable cation) appeared to be not the major mechanisms responsible for Cr3+ sorption. For this metal, strong binding to insoluble large molecular weight organic pool two- to threefold prevailed over the ion exchange processes. Very low acid desorption indicated generally low mobility of Cr3+-organic compounds.  相似文献   

13.
Isoprene emission from tropical trees in Okinawa Island, Japan   总被引:1,自引:0,他引:1  
This study surveyed isoprene emission from 42 indigenous and exotic tropical trees in subtropic Okinawa, Japan. Of the 42 trees studied, 4 emitted isoprene at a rate in excess of 20 μg g−1 h−1, and 28 showed the rates of 1–10 μg g−1 h−1. The remainder emitted less than 1 μg g−1 h−1. The majority of trees in this study may therefore fall within the lower emitting species. However, species in Moraceae that is indigenous in Okinawa emitted isoprene at relatively higher rates with an average of 14.2 μg g−1 h−1. The highest emission rate of 107.1 μg g−1 h−1 for Ficus virgata yielded the area basis rate of 47.4 nmol m−2 s−1, which is almost equivalent to the rate of high emitting species. Furthermore, a linear relationship between light intensity and isoprene emission was noted with Ficus virgata up to 1700 μmol m−2 s−1. These findings may show the potential importance of subtropical areas as sources of isoprene to the atmosphere.  相似文献   

14.
The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g−1 of the adsorbent. The per cent adsorption was maximum in the pH range 3.0–7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as ΔG0, ΔH0 and ΔS0 for the adsorption were evaluated. The negative values of ΔH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.  相似文献   

15.
Zhu R  Sun L  Ding W 《Chemosphere》2005,59(11):1667-1675
The nitrous oxide emissions were measured at three tundra sites and one snowpack on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were 1.1 ± 2.2 and 0.6 ± 1.7 μg N2O m−2 h−1, respectively. The average flux from tundra soil site with penguin dropping addition was 3.7 ± 2.0 μg N2O m−2 h−1, 3–6 times those from the normal tundra soils, suggesting that the deposition of fresh droppings enhanced N2O emissions during penguin breeding period. The summer precipitation had an important effect on N2O emissions; the flux decreased when heavy precipitation occurred. The diurnal cycle of the N2O fluxes from Antarctic tundra soils was not obtained due to local fluky weather conditions. The N2O fluxes through four snowpack sites were obtained by the vertical N2O concentration gradient and their average fluxes were 0.94, 1.36, 0.81 and 0.85 μg N2O m−2 h−1, respectively. The tundra soils under snowpack emitted N2O in the maritime Antarctic and increased local atmospheric N2O concentrations; therefore these fluxes could constitute an important part of the annual N2O budget for Antarctic tundra ecosystem.  相似文献   

16.
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

17.
Bioavailability of zinc in runoff water from roofing materials   总被引:2,自引:0,他引:2  
Corrosion and runoff from zinc-coated materials and outdoor structures is an important source for the dispersion of zinc in the environment. Being part of a large inter-disciplinary research project, this study presents the bioavailability of zinc in runoff water immediately after release from the surface of 15 different commercially available zinc-based materials exposed to the urban environment of Stockholm, Sweden. Runoff water was analysed chemically and evaluated for its possible environmental impact, using both a biosensor test with the bacteria Alcaligenes eutrophus (Biomet®) and the conventional 72 h growth inhibition test with the green alga Raphidocelis subcapitata. Chemical speciation modelling revealed that most zinc (94.3–99.9%) was present as the free Zn ion, the most bioavailable speciation form. These findings were confirmed by the results of the biosensor test (Biomet®) which indicated that all zinc was indeed bioavailable. Analysis of the ecotoxicity data also suggested that the observed toxic effects were due to the presence of Zn2+ ions. Finally, regression analysis showed that, for this type of runoff samples, the rapid screening biosensor was capable of predicting (a) the total amount of zinc present in the runoff samples (R2 of 0.93–0.98; p<0.05) and (b) the observed 72 h-EbC50s (R2 of 0.69–0.97; p<0.05).  相似文献   

18.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


19.
Walker JT  Geron CD  Vose JM  Swank WT 《Chemosphere》2002,49(10):1389-1398
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m−2 s−1 (1.83, 0.63, and 24.19 kg N ha−1 y−1), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NH3, measuring 9.1, 4.3, and 77.6 ng N m−2 s−1 (2.87, 1.35, and 24.50 kg N ha−1 y−1) for NO, NH3, and N2O, respectively. On average, N2O accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though N2O fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was explained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammonium (NH4+) concentration, while N2O flux was positively correlated with soil nitrate (NO3) concentration. Ammonia flux was positively correlated with the ratio of NH4+ to NO3. In the grazed riparian zone, average NH3 and N2O fluxes were not correlated with soil temperature, N concentrations, or moisture. This was likely due to high variability in soil microsite conditions related to cattle effects such as compaction and N input. Nitric oxide flux in the grazed riparian zone was positively correlated with soil temperature and NO3 concentration. Restoration appeared to significantly affect NO flux, which increased ≈600% during the first year following restoration and decreased during the second year to levels encountered at the onset of restoration. By comparing the ratio of total trace gas flux to soil N concentration, we show that the restored riparian zone is likely more efficient than the grazed riparian zone at diverting upper-soil N from the receiving stream to the atmosphere. This is likely due to the recovery of microbiological communities following changes in soil physical characteristics.  相似文献   

20.
A five-stage sequential leaching procedure was used to fractionate 13 heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Al, Ni, Co, As, V, Ba) and sulphur (S) in lime waste from the lime kiln at the causticizing plant of Stora Enso Oyj Veitsiluoto Pulp Mills at Kemi, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O), (2) exchangeable fraction (CH3COOH), (3) easily reduced fraction (HONH3Cl), (4) oxidizable fraction (H2O2 + CH3COONH4), and (5) residual fraction (HF + HNO3 + HCl). Although metals were leachable in all fractions, the highest concentrations for most of the metals were observed in the residual fraction (stage 5). It was also notable that the total heavy metal concentrations in lime waste did not exceed the maximal allowable heavy metal concentrations for soil conditioner agents set by the ministry of the Agricultural and Forestry in Finland. The heavy metals concentrations in lime waste were also lower than the maximal allowable heavy metals concentrations of the European Union Directive 86/278/EEC on the protection of environment, and in particular of the soil, when sewage sludge is used in agriculture. The Ca concentration (420 g kg−1; d.w.) was about 262 times higher than the typical value of 1.6 g kg−1 (d.w.) in arable land in Central Finland. However, the concentration Mg (0.2 g kg−1; d.w.) in lime waste was equal to the Mg concentration in arable land in the Central Finland. The lime waste has strongly alkaline pH (12.8) and a neutralizing value (i.e. liming effect) of 47.9% expressed as Ca equivalents (d.w.). This indicates lime waste to be a potential soil conditioner and improvement as well as a pH buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号