首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CPAM调质浓缩污泥脱水的影响因素及其机理研究   总被引:7,自引:3,他引:4  
污水处理厂剩余污泥的处置是当前业界的热点。研究了阳离子聚丙烯酰胺(CPAM)调质浓缩污泥脱水的一些影响因素,如药剂投加量、污泥pH值、环境温度、搅拌条件等。同时,还对污泥絮凝脱水机理进行了一定的探讨。研究表明:阳离子聚丙烯酰胺(CPAM)作为浓缩污泥脱水剂,在优化投加量下、污泥pH值在5.0~7.5、低速搅拌时,有较好的脱水效果。环境温度对污泥的脱水效果也有一定的影响,夏天处理优于冬天处理。  相似文献   

2.
污水污泥有机调质浓缩和无机调质脱水工艺研究   总被引:2,自引:0,他引:2  
介绍了一种污水污泥有机调质浓缩和无机调质脱水工艺,它可有效提高污泥浓缩和脱水效率。含水率99%以上的剩余污泥经过有机调质后可快速浓缩至含水率93%左右,去除污泥中的间隙水和表面吸附水。浓缩污泥经过无机调质后可板框压滤脱水至含水率60%左右,脱除污泥中的毛细结合水和部分细胞水,而且实现了污泥重金属的稳定化。  相似文献   

3.
就超声波强化给水污泥沉降和脱水性能进行了研究.通过对SV、比阻和滤饼含水率等指标的分析发现,短时间的超声预处理可以明显改善污泥的沉降和脱水性能,且低频(25 kHz)比高频(147.9 kHz)时效果更好.当超声波声密度0.25 W/mL,超声时间3 s时,污泥滤饼含水率比原污泥下降4.7%.最佳超声波声密度0.45 W/mL.短时间超声条件下,超声波与絮凝剂的联用可以进一步降低污泥滤饼含水率,且达到相同滤饼含水率时可减少絮凝剂用量约80%,投资费用大大减小.超声波可以取代絮凝剂促进污泥的沉降性能.  相似文献   

4.
半焦具有孔隙发达、比表面积大、疏水性能强、热值高等特点,采用污泥重力浓缩脱水实验法考察了半焦投加量、粒度对污泥调质与浓缩脱水效果的影响.通过扫描电镜、红外光谱等现代分析手段探讨了基于半焦的污泥调质与深度浓缩脱水的机理.结果表明,当半焦粒度≤425 μm、半焦投加量为2.5 g/100 g污泥时,浓缩污泥上清液的浊度、COD、SS分别从污泥调质前的836 NTU、258.2 mg/L、630.1 mg/L降至调质后的14.8 NTU、38.2 mg/L、18.6 mg/L,达到国家污水综合排放二级标准;浓缩污泥的含水率由调质前的91.74%降至调质后83.71%;污泥静置重力浓缩过程中,经半焦调质后的污泥沉降速率明显增加,污泥在前20 min的平均沉降速率由调质前的2.49 mL/min提高至3.48 mL/min;半焦对污泥调质与深度脱水机理主要表现在半焦对污泥的吸附作用及半焦对污泥疏水性能的增强作用.可见,基于半焦的污泥调质不仅能显著地改善污泥的浓缩脱水性能,还能提高污泥的热值,为污泥的能源化利用创造了条件.  相似文献   

5.
污泥浓缩作为污泥处理的关键环节之一,开发高效的污泥浓缩工艺对于降低污泥含水率、提高脱水设备的运行效率、降低脱水能耗具有十分重要的意义。针对MBR污泥浓度高、污泥粒径小、污泥沉降性能较差等特点,故采用传统的重力浓缩和机械浓缩技术很难有效实现污泥浓缩。因此,尝试采用气浮浓缩技术降低污泥含水率的可行性。从气浮浓缩的中试结果来看,较适宜运行参数为:固体负荷为15 kg/(m2·h),水力负荷为1.5 m3/(m2·h),回流比为1,PAM投配率2‰(w/w干固体),溶气压力为0.4 MPa,气固比为0.03。经过中试设备进行气浮浓缩后,污泥含水率降低至96%左右。此外,还研究了采用气液多相泵系统对剩余污泥的浓缩效率,结果显示,该设备的使用相对于传统溶气气浮工艺,其优点表现在占地小、工程造价低以及运行成本低等方面。  相似文献   

6.
就超声波强化给水污泥沉降和脱水性能进行了研究.通过对SV、比阻和滤饼含水率等指标的分析发现,短时间的超声预处理可以明显改善污泥的沉降和脱水性能,且低频(25 kHz)比高频(147.9 kHz)时效果更好.当超声波声密度0.25 W/mL,超声时间3 s时,污泥滤饼含水率比原污泥下降4.7%.最佳超声波声密度0.45 W/mL.短时间超声条件下,超声波与絮凝剂的联用可以进一步降低污泥滤饼含水率,且达到相同滤饼含水率时可减少絮凝剂用量约80%,投资费用大大减小.超声波可以取代絮凝剂促进污泥的沉降性能.  相似文献   

7.
针对市政污泥水解液脱水困难的问题,研究了阳离子聚丙烯酰胺(CPAM)的投加量、水解液pH值、调理温度、搅拌转速等对污泥水解液脱水性能的影响。结果表明,当CPAM投加量为0.1%,水解液pH值为12.5,调理温度为50 ℃,搅拌转速为100~150 r·min-1时,污泥水解液的脱水效果最佳,无锡和天津两地污泥水解液的毛细吸水时间(CST)分别下降98.43%和98.01%,调理前后,污泥粒径、Zeta电位、污泥黏度及絮体形态也获得明显改善,同时95%以上的污泥蛋白质保留在清液中,有利于污泥蛋白质的后续回收。  相似文献   

8.
为了研究酸碱联合调节剩余污泥水解酸化过程中溶解性蛋白质(SPN)和溶解性碳水化合物(SPS)的释放规律以及对脱水性能的影响,采用3个反应器,其中,1#为先酸(pH 3.0)后碱(pH 10.0)、3#为先碱(pH 10.0)后酸(pH 3.0)的两段控制方式(每段8 d),同时以2#pH不调作为对比实验。结果表明,3个反应器中SPN和SPS的释放情况是调节为碱性>酸性>空白,在相同的控制阶段,SPN的释放量明显高于SPS的释放量;SPN和SPS的最大释放量出现在1#的碱性阶段(后8 d),SPN在碱性阶段的第2天达到最大释放量(883.618 mg/L),SPS在碱性阶段的第8天达到最大释放量(165.922 mg/L)。1#在实验的整个过程中比阻值较低,说明先酸后碱调节方式更利于污泥脱水;在调节为碱性第4天时污泥比阻(SRF)达到最小值(0.342×1013m/kg),处于中难度脱水范围内。与2#相比,3#中的SRF虽稍有改善,但始终处于难脱水范围内。  相似文献   

9.
电解-CPAM联用对印染污泥脱水性能的影响   总被引:1,自引:0,他引:1  
采用铜-石墨为电极,考察了电解电压、反应时间、极板间距和阳离子型聚丙烯酰胺(CPAM)等因素对印染污泥脱水效果的影响.结果表明,在极板间距为3 cm,电压为15 V,反应时间为40 min时,印染污泥的絮体破解效果最佳.该条件下,添加6.67 mg/g(以污泥干基计,DS) CPAM后,印染污泥的比阻(SRF)、毛细吸水时间(CST)与粘度分别下降了59.30%、41.62%和68.14%,滤饼含水率由89.30%下降至82.08%.扫描电镜结果显示,经过最佳条件处理后,污泥絮体被破坏,减弱了对内部结合水的保持力,使污泥脱水性能得到改善.  相似文献   

10.
于污泥与洒精糟液共厌氧消化体系中添加聚丙烯酰胺,在35、45、55℃下消化稳定后对污泥的脱水性能进行试验.结果表明,没有添加聚丙烯酰胺时,55℃厌氧消化后污泥的脱水性能最好;随着聚丙烯酰胺添加量的增加,35℃厌氧消化后污泥的脱水性能逐渐变好,55 ℃厌氧消化后污泥的脱水性能逐渐变差;当聚丙烯酰胺添加量增加到20 g/k...  相似文献   

11.
电动力学去除剩余污泥中重金属受到多种因素的影响,其中电解电压、电极面积、电极材料等都有较大的影响,很有必要进行条件优化研究。针对存在的问题,系统的研究了电解电压、电极面积、电极材料对电动力学修复过程的影响。研究表明,影响污泥中重金属Cu和Zn去除率的因素大小顺序为:电压电极面积电极材料;采用等于或低于氢析出电压进行电动力学修复时,更有利于提高污泥中重金属去除率;增大电极面积,提高了电流强度,有利于污泥中重金属的转化、迁移,从而提高污泥中重金属去除率;研究表明,采用低于氢析出电压和惰性电极可以有效避免电极被腐蚀。  相似文献   

12.
市政污泥强化脱水实验研究   总被引:2,自引:0,他引:2  
通过对市政污泥进行超声处理、絮凝剂处理和超声结合絮凝剂处理,研究不同条件下污泥上清液的COD浓度、粒度分布及微观结构变化情况。实验结果表明,超声波作用可以调整污泥结构,改善污泥脱水性能;当超声时间达到20min左右时,脱水效果最好为87.9%;超声波作用使污泥中释放的COD浓度增加至91.2 mg/L;污泥颗粒粒度发生变化,分布在易脱水段10~100μm的更多。  相似文献   

13.
主要研究了电极材料和电极间距对氢析出电压和电压梯度的影响,以及电极材料、阴极液pH、修复时间对不同形态重金属去除率的影响。实验结果表明,在相同条件下,氢的析出电压和电压梯度受电极材料和电极间距的影响。阳极均为高纯石墨电极,阴极分别为高纯石墨电极、铜电极和铁电极,电极间距在32.5 cm时,高纯石墨为阴极的氢的析出电压最高,电极间距在8.5 cm时,阴极为铜电极和铁电极比高纯石墨电极氢的析出电压及电压梯度都高;改变阴极pH值,延长修复时间,剩余污泥中残留的各种重金属形态发生明显变化;电极间距在8.5 cm,阴极为铜电极时,重金属去除率最高,修复时间缩短。  相似文献   

14.
电渗透脱水对污泥热干燥特性的影响   总被引:1,自引:0,他引:1  
以污水厂机械脱水后的污泥作为研究对象,提出了采用电渗透-热干燥结合进行深度脱水的方法。通过对原泥以及电渗透脱水至不同含水率(67%、71%和76%)的污泥在热干燥过程中含水率和干燥速率的测定,分析电渗透脱水对污泥热干燥特性的改善规律。结果表明,经电渗透脱水至含水率为67%和71%的污泥在热干燥过程中的传热传质速率及干燥速率有明显提高,且干燥温度越高,电渗透后污泥的干燥速率与原泥的干燥速率差距越大。相同电压梯度及相同温度下电渗透至67%后进行热干燥耗能最少。实际应用中应结合能耗分析选择合适的电渗透程度及干燥温度,以达到最优效果。  相似文献   

15.
为探究电渗脱水对污泥理化性质及内部结合水的影响,采用电渗脱水技术处理机械脱水后的污泥,研究了电渗脱水后污泥的含水率、pH、总氮、总磷及结合水的含量变化。结果表明,随着脱水实验的进行,污泥的含水率均呈下降趋势,其中阳极下降最快,最低含水率可降至50.4%。阴极pH上升至9.1,中部变化不明显,而阳极持续下降至5.8。总氮含量表现为阴极和中部缓慢上升,而阳极持续下降;总磷含量的变化为阳极缓慢上升,而阴极和中部持续下降。电渗脱水后污泥中结合水含量较原泥降低,其中阳极结合水含量最低,结合水与干物质的质量之比由初始的2.67降低至0.76。同时发现,结合水含量越少,其所需的融化热就会越高,脱除难度越大。  相似文献   

16.
温度和污泥浓度对碱性条件下剩余污泥水解酸化的影响   总被引:3,自引:0,他引:3  
挥发性脂肪酸(VFAs)是脱氮除磷过程中易于利用的碳源。剩余污泥在碱性条件下发酵能产生大量的VFAs,而温度和污泥浓度是影响剩余污泥发酵的两个重要因素,为此考察了厌氧环境,温度15℃和35℃,pH为10的条件下,剩余污泥挥发性悬浮污泥浓度(VSS为1.708~11.049 g/L)对水解酸化的影响,为实现剩余污泥的资源化提供理论依据。研究得出如下结论:污泥浓度对剩余污泥溶解性化学需氧量(SCOD)溶出率影响不大。低污泥浓度和高污泥浓度均不利于剩余污泥产酸,最佳产酸的污泥浓度为8.540 g/L。各污泥浓度条件下产生的6种挥发性有机酸中乙酸的比例总是最大,且低污泥浓度条件下乙酸的百分含量要高于高污泥浓度条件下。温度对高污泥浓度条件下污泥的最大SCOD溶出量影响较大,而对低污泥浓度条件下污泥最大的产酸量影响较大。无论15℃还是35℃,中等污泥浓度对氨氮的释放量影响不大,35℃条件下污泥浓度对正磷酸盐的释放要比15℃条件下大。  相似文献   

17.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了温度变化对淀粉酶强化剩余污泥为燃料的MFC(ESMFC)产电特性和污泥减量化效果的影响.研究表明,在40℃时ESMFC最大功率密度相对于参照组(投加等量失活酶系统)功率密度输出增加最大,为94%;此时CE也最大,为9.2%。这主要是由于在此温度下淀粉酶对系统的促进作用更明显。在45℃时,ESMFC系统中污泥减量化效果最好.当运行温度为45℃时,ESMFC中TCOD去除率为87.2%,投加等量失活淀粉酶的ESMFC中TCOD去除率为55.7%;ESMFC中VSS/TSS从原泥中的67.34%下降到28.07%,对照组则下降到45.61%。此研究对投加淀粉酶的ESMFC实际应用具有一定指导意义。  相似文献   

18.
为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果.加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%.在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2∶3时,SMFC最大功率密度为776 mW/m2.随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4∶1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3%、66.7%和80.4%.因此,温度相对较低时,外加酶强化效果更明显;与单种酶相比,混合酶对SMFC产电性能和污泥减量化的强化效果更显著.  相似文献   

19.
污泥的粘度与浓度、温度三者关系式的实验推导   总被引:10,自引:0,他引:10  
通过融合污泥粘度与污泥浓度关系式、污泥粘度与温度关系式,得到一个新的关系式:污泥粘度与污泥浓度、温度的关系式,并通过实验数据拟合出各项参数,拟合效果比较理想。得出的污泥粘度与污泥浓度、温度的关系式对了解污泥的粘度变化非常有帮助,同时,该关系式也将为污泥处理、处置方案的制定提供参考依据。  相似文献   

20.
通过融合污泥粘度与污泥浓度关系式、污泥粘度与温度关系式,得到一个新的关系式:污泥粘度与污泥浓度、温度的关系式,并通过实验数据拟合出各项参数,拟合效果比较理想.得出的污泥粘度与污泥浓度、温度的关系式对了解污泥的粘度变化非常有帮助,同时,该关系式也将为污泥处理、处置方案的制定提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号