共查询到20条相似文献,搜索用时 15 毫秒
1.
W. de Vries J.E. Groenenberg 《Environmental pollution (Barking, Essex : 1987)》2009,157(12):3422-3432
This paper evaluates approaches to calculate acceptable loads for metal deposition to forest ecosystems, distinguishing between critical loads, stand-still loads and target loads. We also evaluated the influence of including the biochemical metal cycle on the calculated loads. Differences are illustrated by examples of Cd, Cu, Pb and Zn for a deciduous forest on five major soil types in the Netherlands. Stand-still loads are generally lower than critical loads, which in turn are lower than the target loads indicating that present levels are below critical levels. Uncertainties in the calculated critical loads are mainly determined by the uncertainty in the critical limits and the chemical speciation model. Including the metal cycle has a small effect on the calculated critical loads. Results are discussed in view of the applicability of the critical load concept for metals in future protocols on the reduction in metal emissions. 相似文献
2.
中国主要湖泊营养氮沉降临界负荷的研究 总被引:27,自引:0,他引:27
水体营养氮沉降临界负荷是不致使水体产生富营养化的最高氮沉降量。文中探讨了一种依据湖泊氮质量平衡原理计算营养氮沉降临界负荷的方法。用该方法计算表明 ,我国主要湖泊的营养氮沉降临界负荷比较低 ,大部分小于 1keq· hm- 1 · a- 1 ,部分已为目前的氮沉降量或者两者相当接近 ,意味着只接受氮沉降也能导致这些湖泊产生富营养化。但实际统计结果表明 ,氮沉降在导致受工农业生产和生活影响很大的城市和郊区湖泊的水质富营养化的所有氮污染源中所占比例较低 ,而其它来源的氮输入如河道入湖、工业生活废水和农田径流等才是导致富营养化的最主要因素 ,它们的量已远远超过了这些水体可随最高允许氮负荷。因此 ,对控制这些湖泊的水质富营养化而言 ,控制氮沉降并不是目前最紧迫的任务 ,而其它人为污染源的控制才是最急需的。但氮沉降临界负荷在湖泊富营养化的中长远控制中仍具有十分重要的意义。 相似文献
3.
Belyazid S Kurz D Braun S Sverdrup H Rihm B Hettelingh JP 《Environmental pollution (Barking, Essex : 1987)》2011,159(3):789-801
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. 相似文献
4.
Linda H. Geiser Sarah E. Jovan Matthew K. Porter 《Environmental pollution (Barking, Essex : 1987)》2010,158(7):2412-2421
Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America’s maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha−1 y−1 in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. 相似文献
5.
The concept of critical loads has been generally accepted throughout Europe, and increasingly in Asian countries and the rest of the world, as providing the data which forms the basis for international negotiations on abatement strategies for emissions of acidifying pollutants. Central to the determination of quantitative critical loads of acidity for forests (and other ecosystems) is the rate at which the minerals in the soil weather or dissolve. Seven methods for determining these rates on a regional basis for the production of critical load maps have been suggested by the official bodies which are responsible for co-ordinating the European critical load mapping efforts. These methods are largely correlations which require a knowledge of the soil parent material and/or the soil mineralogy. The purpose of this paper is to review these weathering rate calculation methods and to assess whether it is currently possible to calculate numerically accurate critical loads for the production of regional critical load maps. A consideration of the data used to generate these methods and comparisons of the weathering rates calculated using various methods leads to the conclusion that at present it is not. Further work is needed to develop and maintain the initial credibility of critical loads both scientifically and as an aid to policy decisions. 相似文献
6.
The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earth’s surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance approach based on both national and site-specific data and using different approaches for estimating base cation weathering. Results suggested that the scale and source of input data can have large effects on the calculated CL and that the most important parameter in the steady-state model used to estimate CL is base cation weathering. These results suggest that the data and approach used to estimate weathering must be robust if the calculated CL is to be useful for its intended purpose. 相似文献
7.
Nitrate and ammonium concentration in wet deposition detrimentally impacted a sensitive pollution indicator species irrespective of the nitrogen dose. 相似文献
8.
Steven G. McNulty Johnny L. Boggs 《Environmental pollution (Barking, Essex : 1987)》2010,158(6):2053-2058
Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response. 相似文献
9.
Nitrogen deposition and its ecological impact in China: An overview 总被引:29,自引:0,他引:29
Xuejun Liu Lei DuanJiangming Mo Enzai DuJianlin Shen Xiankai LuYing Zhang Xiaobing ZhouChune He Fusuo Zhang 《Environmental pollution (Barking, Essex : 1987)》2011,159(10):2251-2264
Nitrogen (N) deposition is an important component in the global N cycle that has induced large impacts on the health and services of terrestrial and aquatic ecosystems worldwide. Anthropogenic reactive N (Nr) emissions to the atmosphere have increased dramatically in China due to rapid agricultural, industrial and urban development. Therefore increasing N deposition in China and its ecological impacts are of great concern since the 1980s. This paper synthesizes the data from various published papers to assess the status of the anthropogenic Nr emissions and N deposition as well as their impacts on different ecosystems, including empirical critical loads for different ecosystems. Research challenges and policy implications on atmospheric N pollution and deposition are also discussed. China urgently needs to establish national networks for N deposition monitoring and cross-site N addition experiments in grasslands, forests and aquatic ecosystems. Critical loads and modeling tools will be further used in Nr regulation. 相似文献
10.
Lorenz M Nagel HD Granke O Kraft P 《Environmental pollution (Barking, Essex : 1987)》2008,155(3):426-435
Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies. 相似文献
11.
J.N. Cape L.J. van der Eerden I.D. Leith 《Environmental pollution (Barking, Essex : 1987)》2009,157(3):1033-1037
The current critical level for ammonia (CLENH3) in Europe is set at 8 μg NH3 m−3 as an annual average concentration. Recent evidence has shown specific effects of ammonia (NH3) on plant community composition (a true ecological effect) at much smaller concentrations. The methods used in setting a CLENH3 are reviewed, and the available evidence collated, in proposing a new CLENH3 for different types of vegetation. For lichens and bryophytes, we propose a new CLENH3 of 1 μg NH3 m−3 as a long-term (several year) average concentration; for higher plants, there is less evidence, but we propose a CLENH3 of 3 ± 1 μg NH3 m−3 for herbaceous species. There is insufficient evidence to provide a separate CLENH3 for forest trees, but the value of 3 ± 1 μg NH3 m−3 is likely to exceed the empirical critical load for N deposition for most forest ecosystems. 相似文献
12.
Impacts of atmospheric pollution on the plant communities of British acid grasslands 总被引:1,自引:0,他引:1
Payne RJ Stevens CJ Dise NB Gowing DJ Pilkington MG Phoenix GK Emmett BA Ashmore MR 《Environmental pollution (Barking, Essex : 1987)》2011,159(10):2602-2608
Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. 相似文献
13.
Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests 总被引:2,自引:0,他引:2
Fenn ME Jovan S Yuan F Geiser L Meixner T Gimeno BS 《Environmental pollution (Barking, Essex : 1987)》2008,155(3):492-511
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. 相似文献
14.
Ricardo Cisneros Andrzej Bytnerowicz 《Environmental pollution (Barking, Essex : 1987)》2010,158(10):3261-3271
Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 μg m−3 for HNO3, and 2.6-5.2 μg m−3 for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha−1 for maximum values, and 0.4-8 kg N ha−1 for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3. 相似文献
15.
Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy) 总被引:2,自引:0,他引:2
Raffaella Balestrini Antonio Tagliaferri 《Atmospheric environment (Oxford, England : 1994)》2001,35(36):1799
Throughfall and bulk precipitation chemistry were studied for five years (June 1994–May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg2+, while the throughfall concentrations differed in the measured values of H+, N-NO3−, Cl−, Na+, K+, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO3−, N-NH4+ and H+ at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca2+, K+ and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO42− deposition fluxes (21.3 kg ha−1 yr−1 at Val Masino and 23.6 kg ha−1 yr−1 at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1 kg ha−1 yr−1 in the bulk input, and 15.0 and 18.0 kg ha−1 yr−1 in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kg N ha−1 at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. 相似文献
16.
McNulty SG Cohen EC Moore Myers JA Sullivan TJ Li H 《Environmental pollution (Barking, Essex : 1987)》2007,149(3):281-292
Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US. 相似文献
17.
Jeffrey R. Brook Alan H. Wiebe Sandra A. Woodhouse Celine V. Audette Tom F. Dann Sandra Callaghan Maria Piechowski Ewa Dabek-Zlotorzynska Joseph F. Dloughy 《Atmospheric environment (Oxford, England : 1994)》1997,31(24):4223-4236
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia. 相似文献
18.
Page T Whyatt JD Metcalfe SE Derwent RG Curtis C 《Environmental pollution (Barking, Essex : 1987)》2008,156(3):997-1006
Acid deposition models are inherently simplified representations of real world behaviour and their performance is best evaluated by comparison with observations. National and international acid rain policy assessments handle observed and modelled deposition fields in different ways. Here, both the observed and modelled deposition fields are seen as uncertain and the Generalised Likelihood Uncertainty Estimation (GLUE) framework is used to choose acceptable sets of model input parameters that minimise the differences between them. These acceptable sets of model parameters are then used to estimate deposition budgets to the UK and to provide a probabilistic treatment of excess deposition over environmental quality standards (critical loads). 相似文献
19.
Distribution of heavy metal contents of urban soils in parks of Seville 总被引:28,自引:0,他引:28
Several metals in urban soils of Seville were extracted by two methods, which respectively give estimates of the available and ‘quasi total’ contents. Although the soils did not show strong heterogeneity in their general properties, high dispersion of the contents in those metals with greater relative availability, Cu, Pb and Zn, as compared to others suggested that pollution with these three metals could occur in some sampling sites. It was shown that the contents in these metals tend to increase as the historic quarters of the city are approached. Using reference values given by the Québec Ministry of Environment it was shown that those green areas closer to the historic centre present contents in Pb, Zn and particularly Cu that often exceed the acceptable limits for residential, recreational and institutional sites. From background contents for Seville soils estimated from a park located on the outskirts, a pollution load index (PLI) for each sampling site was calculated for the set of these three metals. It was shown that the PLI tends to increase as traffic density increases and as distance from main traffic decreases, but poor regressions were obtained, suggesting that other variables different from traffic should be considered. 相似文献
20.
Speciation of zinc in contaminated soils 总被引:1,自引:0,他引:1
Stephan CH Courchesne F Hendershot WH McGrath SP Chaudri AM Sappin-Didier V Sauvé S 《Environmental pollution (Barking, Essex : 1987)》2008,155(2):208-216
The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn(2+), soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K(d)) for Zn ranged from 17 to 13,100Lkg(-1) soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn(2+) varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn(2+), dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils. 相似文献