首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of appropriate advanced treat- ment process in the municipal wastewater treatment plants (WWTPs) has become an important issue considering the elimination of emerging contaminants, such as pharma- ceutical and personal care products (PPCPs). In the present study, the removal of 13 PPCPs belonging to different therapeutic classes by the sequential ultraviolet (UV) and ozonation process in a full-scale WWTP in Beijing was investigated over the course of ten months. Most of the target PPCPs were effectively removed, and the median removal efficiencies of individual PPCPs, ranging from -13% to 89%, were dependent on their reaction rate constants with molecular ozone. Noticeable fluctuation in the removal efficiencies of the same PPCPs was observed in different sampling campaigns. Nevertheless, the sequential UV and ozonation process still made a significant contribution to the total elimination of most PPCPs in the full-scale WWTP, by compensating for the poor or fluctuant removal performance of PPCPs by biologic treatment process.  相似文献   

2.
A novel cellulose-based adsorbent, iron(III)-coordinated amino-functionalised poly(glycidylmethacrylate)-grafted cellulose [Fe(III)–AM-PGMACell] was developed for the removal of phosphate from water and wastewater. The scanning electron micrograph showed that AM-PGMACell has a rougher surface than cellulose and the adsorption of Fe(III) on AM-PGMACell made the surface even rougher. Infrared spectroscopy revealed that amino groups on the surface of AM-PGMACell complexed with Fe(III) played an important role in the removal of phosphate from solutions. X-Ray diffraction patterns showed a decrease in crystallinity after graft copolymerisation onto cellulose. The effects of contact time, initial sorbate concentration, pH, agitation speed, dose of adsorbent and temperature on the removal process were investigated. Maximum removal of 99.1% was observed for an initial concentration of 25 mg·L ?1 at pH 6.0 and an adsorbent dose of 2.0 g·L ?1. A two-step pseudo-first-order kinetic model and Sips isotherm model represented the measured data very well. Complete removal of 11.6 mg·L ?1 phosphate from fertiliser industry wastewater was achieved by 1.6 g·L ?1 Fe(III)–AM-PGMACell. The adsorbent exhibited very high reusability for several cycles. Overall, the study demonstrated that Fe(III)–AM-PGMACell can be used as an efficient adsorbent for the removal and recovery of phosphate from water and wastewater.  相似文献   

3.
A long-term pilot-scale H2-based membrane biofilm reactor (MBfR) was tested for removal of nitrate from actual groundwater. A key feature of this second-generation pilot MBfR is that it employed lower cost polyester hollow fibers and still achieved high loading rate. The steady-state maximum nitrate surface loading at which the effluent nitrate and nitrite concentrations were below the Maximum Contaminant Level (MCL) was at least 5.9 g·N·(m2·d)?1, which corresponds to a maximum volumetric loading of at least 7.7 kg·N·(m3·d) ?1. The steady-state maximum nitrate surface area loading was higher than the highest nitrate surface loading reported in the first-generation MBfRs using composite fibers (2.6 g·N·(m2·d)?1). This work also evaluated the H2-utilization efficiency in MBfR. The measured H2 supply rate was only slightly higher than the stoichiometric H2-utilization rate. Thus, H2 utilization was controlled by diffusion and was close to 100% efficiency, as long as biofilm accumulated on the polyester-fiber surface and the fibers had no leaks.  相似文献   

4.
Denitrifying biofilter (DNBF) is widely used for advanced nitrogen removal in the reclaimed wastewater treatment plants (RWWTPs). Manual control of DNBF easily led to unstable process performance and high cost. Consequently, there is a need to automatic control of two decisive operational processes, carbon dosage and backwash, in DNBF. In this study, online control of DNBF was investigated in the pilot-scale DNBF (600 m3·d–1), and then applied in the full-scale DNBF (10 × 104 m3·d–1). A novel simple online control strategy for carbon dosage with the effluent nitrate as the sole control parameter was designed and tested in the pilot-scale DNBF. Backwash operation was optimized based on the backwash control strategy using turbidity as control parameter. Using the integrated control strategy, in the pilot-scale DNBF, highly efficient nitrate removal with effluent TN lower than 3 mg·L–1 was achieved and DNBF was not clogged any more. The online control strategy for carbon dosage was successfully applied in a RWWTP. Using the online control strategy, the effluent nitrate concentration was controlled relatively stable and carbon dosage was saved for 18%.
  相似文献   

5.
6.
A laboratory-scale anaerobic-anoxic-aerobic process (A2O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A2O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A2O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A2O process, the suspended activated sludge in this A2O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and NH 4 + -N were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g?1 additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A2O process was also investigated, and the results demonstrated that the optimum value was 1:6:2.  相似文献   

7.
The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L–1, SRF of the sludge decreased from 7.85 × 1012 m·kg–1 to 2.06 × 1012 m·kg–1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.
  相似文献   

8.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

9.
Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced from corn straw. Biochar pyrolyzed under 400°C for 2 h could reach the ideal removal efficiencies (99.24%and 98.62% for Cd and Pb, respectively) from water with the biochar dosage of 20 g·L–1 and initial concentration of 20 mg·L–1. The pH value of 4–7 was the optimal range for adsorption reaction. The adsorption mechanism was discussed on the basis of a range of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman analysis; it was concluded as surface complexation with active sorption sites (-OH, -COO-), coordination with π electrons (C = C, C = O) and precipitation with inorganic anions (OH-, CO3 2–, SO4 2–) for both Cd and Pb. The sorption isotherms fit Langmuir model better than Freundlich model, and the saturated sorption capacities for Cd and Pb were 38.91 mg·g-1 and 28.99 mg·g–1, respectively. When mixed with soil, biochar could effectively increase alkalinity and reduce bioavailability of heavy metals. Thus, biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.
  相似文献   

10.
The removal of arsenic from water with natural and modified clinoptilolite   总被引:1,自引:0,他引:1  
The presence of increased arsenic concentrations in Eastern Croatia is a consequence of the geological composition of the soil. Because of its known harmful effects, arsenic removal is of high importance and adsorption represents an attractive and economically efficient approach to arsenic removal. The use of zeolites obtained from the Donje Jesenje deposit, Croatia (CZ) and the Zlatokop deposit in Vranjska Banja, Serbia (SZ) in Na- and Fe–Na-modified forms was investigated in order to effectively remove arsenate and arsenite from aqueous solutions. The adsorption kinetics of arsenic was studied as a function of the initial arsenate and arsenite concentrations (30–300 μg · L?1), equilibration time (3–48 h), pH (5–10) and in the presence of sulfate and phosphate at initial concentrations of 0.2–0.5 mg · L?1. In order to estimate sorption constants designating the sorption capacity and affinity of the zeolites samples, the experimental results were fitted to the Langmuir and Freundlich sorption isotherms. Desorption tests conducted with 1–3 mol · L?1 HCl indicated that arsenate sorption was irreversible. The results obtained indicated that use of the Serbian zeolite in the Fe–Na-modified form (Fe–Na-SZ) was favourable for arsenate removal from water containing up to 30 μg As · L?1.  相似文献   

11.
Metal concentrations in sediment and in whole tissue of the benthic polychaete Glycera longipinnis collected along the southwest coast of India were analysed. Relative seasonal accumulation of metals (Cu, Pb, Cr, Ni, Zn, Cd, Hg) was studied by categorising the habitat as less polluted or highly polluted based on metal contamination routed through industrial and urban sources. The metal content in tissues varied seasonally in the ranges, Cu: 2.21–27.08 μg·g?1, Pb: 0.06–4.92 μg·g?1, Cr: 1.73–29.20 μg·g?1, Ni: 1.60–4.61 μg·g?1, Zn: 14.72–82.30 μg·g?1, Cd: 0.04–1.38 μg·g?1and Hg: below decetable limits to 0.86 μg·g?1. Concentration of heavy metals was found to be high in the whole body of G. longipinnis pooled from the polluted transects. The results of this study suggest that G. longipinnis may act as a useful biological indicator for heavy metal pollution along the southwest coast of India.  相似文献   

12.
污水处理厂空气介质抗生素抗性基因的分布   总被引:1,自引:0,他引:1  
考察了污水处理厂空气介质中典型的抗性基因(antibiotic resistance genes,ARGs)污染水平和浓度分布,并通过16S r RNA高通量技术对样品进行亲缘性及溯源研究。结果表明,在污水厂空气样品中8种抗生素抗性基因的检出率均超过50%,其中tet C、sul1、sul2和erm B检出率为100%。在曝气池和污泥脱水车间空气样品中8种抗性基因检出率均为100%。对其中的sul1、sul2、tet G和tet X共4种ARGs的定量分析结果表明,以上4种基因的相对浓度范围在102~105copies·ng~(-1)DNA之间,与邻近居民区空气样品抗性基因浓度处于同一水平;空气样品16S r RNA高通量测序聚类分析结果显示,居民区空气与污水厂园区内空气有较高的种群相似度,污水厂处理单元对其邻近区域的空气介质微生物组成影响较大。  相似文献   

13.
Conventional biological removal of nitrogen and phosphorus is usually limited due to the lack of biodegradable carbon source, therefore, new methods are needed. In this study, a new alternative consisting of enhanced biological phosphorus removal (EBPR) followed by partial nitritationanammox (PN/A), is proposed to enhance nutrients removal from municipal wastewater. Research was carried out in a laboratory-scale system of combined two sequencing batch reactors (SBRs). In SBR1, phosphorus removal was achieved under an alternating anaerobic-aerobic condition and ammonium concentration stayed the same since nitrifiers were washed out from the reactor under short sludge retention time of 2–3 d. The remaining ammonium was further treated in SBR2 where PN/A was established by inoculation. A maximum of nitrogen removal rate of 0.12 kg N?m–3?d–1 was finally achieved. During the stable period, effluent concentrations of total phosphorus and total nitrogen were 0.25 and 10.8 mg?L–1, respectively. This study suggests EBPR-PN/A process is feasible to enhance nutrients removal from municipal wastewater of low influent carbon source.
  相似文献   

14.
A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mgL·(L·h)–1, respectively. Meanwhile, negligible NO3 and NO2 were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.
  相似文献   

15.
● Environmental parameters affected functional bacteria and network associations. ● The structure and interactions of AS networks changed greatly within tanks. ● Anoxic co-occurrence network was more unstable and easily influenced. ● Composition of functional bacteria had a seasonal succession pattern. Tetrasphaera was the major PAO in spring and winter leading a better P removal. Understanding the structures and dynamics of bacterial communities in activated sludge (AS) in full-scale wastewater treatment plants (WWTPs) is of both engineering and ecological significance. Previous investigations have mainly focused on the AS communities of WWTP aeration tanks, and the differences and interactions between the communities in anaerobic and anoxic tanks of the AS system remain poorly understood. Here, we investigated the structures of bacterial communities and their inter-connections in three tanks (anaerobic, anoxic, and aerobic) and influent from a full-scale WWTP with conventional anaerobic/anoxic/aerobic (A/A/O) process over a year to explore their functionality and network differentiation. High-throughput sequencing showed that community compositions did not differ appreciably between the different tanks, likely due to the continuous sludge community interchange between tanks. However, network analysis showed significant differences in inter-species relationships, OTU topological roles, and keystone populations in the different AS communities. Moreover, the anoxic network is expected to be more unstable and easily affected by environmental disturbance. Tank-associated environmental factors, including dissolved oxygen, pH, and nutrients, were found to affect the relative abundance of functional genera (i.e., AOB, NOB, PAOs, and denitrifiers), suggesting that these groups were more susceptible to environmental variables than other bacteria. Therefore, this work could assist in improving our understanding of tank-associated microbial ecology, particularly the response of functional bacteria to seasonal variations in WWTPs employing A/A/O process.  相似文献   

16.
The primary data about the role of automotive manufacturing industry in emitting dichloromethane (DCM) to the environment in Iran are provided by a case study of SAIPA Automotive Manufacturing Company in 2012. The average emission rate and emission factor of DCM in the stack exhaust air streams of the solvent-based automotive painting plant were 6.8 kg·d?1 and 19.5 g per car, respectively. The spray booths had the highest portion (about 85%) of DCM emission in the stack exhaust air streams. The average concentration of DCM (± standard deviation) in the generated wastewater of the factory was 64 ± 12 μg·L?1, but in the effluent of the factory wastewater treatment plant, it was reduced to a nondetectable level. DCM was also observed in three groundwater wells out of five monitored water resources. To control DCM emission and prevent pollution, the replacement of solvent-based paints with water-based paints is highly recommended.  相似文献   

17.
Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L–1Chlorella sp. and 3.45 g·L–1S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.
  相似文献   

18.
21种杀菌剂对家蚕的急性毒性与风险评价   总被引:5,自引:0,他引:5  
旨在为桑园及周围农田合理选择和使用农药提供科学依据,采用食下毒叶法测定了农业生产上常用的21种杀菌剂对家蚕的急性毒性,并进行了风险评价.急性毒性测定结果表明:20%苯醚甲环唑微乳剂、10%氟硅唑水乳剂、12.5%腈菌唑水乳剂、12.5%烯唑醇可湿性粉剂和70%嗯霉灵可湿性粉剂对家蚕的96 h-LC50值为46.5(41...  相似文献   

19.
Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engineered microorganism (GEM) with green fluorescent protein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were investigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volumetric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM survival. The GEM population size initially decreased shortly and then was kept constant at about 104–105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.  相似文献   

20.
A laboratory-scale investigation was performed to study arsenic (As (V)) removal by negatively charged GE-HL nanofiltration (NF) membrane in simulated drinking water. Effects of As (V) concentration (0–200 μg·L?1), pH, and co-ions and counter-ions were investigated. The NF membrane presented good stability, and the rejection rates exceeded 90%. The rejection rates of As (V) decreased with the increase of As (V) concentration, while it increased with the increase of pH (reached 96% at pH 6.75). Moreover, a negative relationship was observed between the co-existing ions of Cl?, Na+, SO 4 2? , and Ca2+ and the removal of As (V), in which bivalent ions presented more significant effects than monovalent ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号