首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.
  相似文献   

2.
In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg?L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW?cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh?m–3?order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg?L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ?OH was formed under visible light, and ?O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.
  相似文献   

3.
In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NO x and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).
  相似文献   

4.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

5.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

6.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

7.
Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO4·5H2O concentration, NaCl concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO4·5H2O, NaCl, H2SO4 and current density and then decreased with further increasing these conditions. NaCl, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4·5H2O. When the concentration of CuSO4·5H2O, NaCl and H2SO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm2, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.
  相似文献   

8.
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
  相似文献   

9.
Negatively charged carboxymethylated polyethersulfone (CMPES) and positively charged quaternized polyethersulfone (QAPES) ultrafiltration (UF) membranes were prepared by bulk chemical modification and non-solvent induced phase separation method. The effects of PES membrane interfacial electrokinetic property on the bovine serum albumin (BSA) membrane fouling behavior were studied with the aid of the membrane-modified colloidal atomic force microscopy (AFM) probe. Electrokinetic test results indicated that the streaming potential (ΔE) of QAPES membrane was not consistent with its expected IEC value, however, within the pH range of 3–10, the ζ potentials of two charged-modified PES membranes were more stable than the unmodified membrane. When pH value was 3, 4.7 or 9, the interaction behavior between charged PES membrane and BSA showed that there was significant linear correlation between the jump distance r 0 of membrane-BSA adhesion force (F/R) and the ζ potential absolute value. Charged modification significantly reduced the adhesion of PES membrane-BSA, and the adhesion data was good linear correlated with the flux decline rate in BSA filtration process, especially reflected in the CMPES membrane. The above experimental facts proved that the charged membrane interfacial electric double layer structure and its electrokinetic property had strong ties with the protein membrane fouling behavior.
  相似文献   

10.
Treating water contaminants via heterogeneously catalyzed reduction reaction is a subject of growing interest due to its good activity and superior selectivity compared to conventional technology, yielding products that are non-toxic or substantially less toxic. This article reviews the application of catalytic reduction as a progressive approach to treat different types of contaminants in water, which covers hydrodehalogenation for wastewater treatment and hydrogenation of nitrate/nitrite for groundwater remediation. For hydrodehalogenation, an overview of the existing treatment technologies is provided with an assessment of the advantages of catalytic reduction over the conventional methodologies. Catalyst design for feasible catalytic reactions is considered with a critical analysis of the pertinent literature. For hydrogenation, hydrogenation of nitrate/nitrite contaminants in water is mainly focused. Several important nitrate reduction catalysts are discussed relating to their preparation method and catalytic performance. In addition, novel approach of catalytic reduction using in situ synthesized H2 evolved from water splitting reaction is illustrated. Finally, the challenges and perspective for the extensive application of catalytic reduction technology in water treatment are discussed. This review provides key information to our community to apply catalytic reduction approach for water treatment.
  相似文献   

11.
In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L–1 FeVO4 and 15 mmol·L–1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min–1), pH 7.0 (k = 0.0438 min–1), and pH 7.7 (k = 0.0434 min–1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.
  相似文献   

12.
Since the concept of the osmotic microbial fuel cell (OsMFC) was introduced in 2011, it has attracted growing interests for its potential applications in wastewater treatment and energy recovery. However, forward osmosis (FO) membrane fouling resulting in a severe water flux decline remains a main obstacle. Until now, the fouling mechanisms of FO membrane especially the development of biofouling layer in the OsMFC are not yet clear. Here, the fouling behavior of FO membrane in OsMFCs was systematically investigated. The results indicated that a thick fouling layer including biofouling and inorganic fouling was existed on the FO membrane surface. Compared to the inorganic fouling, the biofouling played a more important role in the development of the fouling layer. Further analyses by the confocal laser scanning microscopy (CLSM) implied that the growth of biofouling layer on the FO membrane surface in the OsMFC could be divided into three stages. Initially, microorganisms associated with ß-D-glucopyranose polysaccharides were deposited on the FO membrane surface. After that, the microorganisms grew into a biofilm caused a quick decrease of water flux. Subsequently, some of microorganisms were dead due to lack of nutrient source, in the meantime, polysaccharide and proteins in the biofouling layer were decomposed as nutrient source, thus leading to a slow development of the biofouling layer. Moreover, the microorganisms played a significant role in the formation and development of the biofouling layer, and further studies are needed to mitigate the deposition of microorganisms on FO membrane surfaces in OsMFCs.
  相似文献   

13.
We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.
  相似文献   

14.
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
  相似文献   

15.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   

16.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

17.
Eutrophication with a large number of Microcystis aeruginosa commonly occurs worldwide, thereby threatening the aquatic ecosystem and human health. In this study, four kinds of algicides were tested to explore their influence on cell density and chlorophyll-a of M. aeruginosa. Results showed that aluminum silicate agent, which inhibited more than 90% cell growth compared with the control group, demonstrated the strongest inhibition effect immediately on M. aeruginosa growth. Furthermore, the production and release of microcystin (MC)-LR were investigated. Aluminum silicate, CuSO4, and Emma-11 were more effective than pyrogallic acid in disrupting the cells of M. aeruginosa, thereby increasing the extracellular MC-LR concentration. Aluminum silicate caused the highest extracellular MC-LR concentration of more than 45 mg·L–1. Biotoxicity was also detected to evaluate the environmental risks of MC-LR release, which were related to the usages of different algicides. Extracellular MC-LR concentration mostly increased when the biotoxicity of algae solution increased. The experiments were also designed to reveal the effects of physical conditions in riverways, such as natural sunlight, aeration and benthal sludge, on MC-LR degradation. These findings indicated that UV rays in sunlight, which can achieve a MC-LR removal efficiency of more than 15%, played an important role in MC-LR degradation. Among all the physical pathways of MC-LR removal, benthal sludge adsorption presented the optimal efficiency at 20%.
  相似文献   

18.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

19.
We designed photoelectrochemical cells to achieve efficient oxidation of rhodamine B (RhB) without the need for photocatalyst or supporting electrolyte. RhB, the metal anode/cathode, and O2 formed an energy-relay structure, enabling the efficient formation of O 2 species under ultraviolet illumination. In a single-compartment cell (S cell) containing a titanium (Ti) anode, Ti cathode, and 10 mg·mL–1 RhB in water, the zero-order rate constant of the photoelectrochemical oxidation (kPEC) of RhB was 0.049 mg·L–1·min–1, while those of the photochemical and electrochemical oxidations of RhB were nearly zero. kPEC remained almost the same when 0.5 mol·L–1 Na2SO4 was included in the reactive solution, regardless of the increase in the photocurrent of the S cell. The kPEC of the illuminated anode compartment in the two-compartment cell, including a Ti anode, Ti cathode, and 10 mg·mL–1 RhB in water, was higher than that of the S cell. These results support a simple, eco-friendly, and energysaving method to realize the efficient degradation of RhB.
  相似文献   

20.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号