首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a new technology used for the cleaning of chromium-contaminated soil, worldwide interest in eletrokinetic (EK) remediation has grown considerably in recent times. However, owing to the fact that chromium exists as both cationic and anionic species in the soil, it is not an efficient method. This paper reports upon a study in which a process using approaching anodes (AAs) was used to enhance the removal efficiency of chromium by eletrokinetics. Two bench-scale experiments to remove chromium from contaminated soil were performed, one using a fixed anode (FA) and the other using AAs. In the AAs experiment, the anode moved toward the cathode by 7 cm every three days. After remediation, soil pH, total chromium, and fractionation of chromium in the soil were determined. The average removal efficiency of total chromium was 11.32% and 18.96% in the FA and AAs experiments, respectively. After remediation, acidic soil conditions throughout the soil were generated through the use of AAs, while 80% of the soil remained neutral or alkalic when using the FA approach. The acidic soil environment and high field intensity in the AAs experiment might have favored chromium desorption, dissolution and dissociation from the soil, plus the mobility of chromium in the soil was also enhanced. The results demonstrate that AAs used in the process of EK remediation can enhance the efficiency of chromium removal from soil.  相似文献   

2.
氧化还原过程在铬的形态转化中起了重要作用,而铬形态的转化能够影响其生物有效性及毒性。通过温室土培试验研究了六价铬(Cr(Ⅵ))与三价铬(Cr(Ⅲ))在淹水与不淹水条件下在土壤溶液中的动态变化及水稻对其吸收的变化。结果表明,土壤中添加Cr(Ⅲ)时,土壤溶液中检测不出Cr;而随着土壤中添加Cr(Ⅵ)浓度的增加,土壤溶液中Cr(Ⅵ)的浓度增加,但是溶液中检测不出Cr(Ⅲ);淹水处理总体上降低了土壤溶液中Cr(Ⅵ)的浓度。而土壤添加Cr(Ⅲ)、Cr(Ⅵ)和水分处理对土壤溶液p H没有显著影响,p H在7.08.0之间变动。土壤添加Cr(Ⅵ)处理的水稻中,只有90 mg·kg-1Cr(Ⅵ)淹水处理的水稻成活,而其余处理水稻没有成活。土壤中添加Cr(Ⅲ)处理,水稻幼苗生物量随Cr(Ⅲ)浓度的增加而显著降低;除了200mg·kg-1Cr(Ⅲ)处理外,其余淹水处理的水稻幼苗生物量明显高于不淹水处理的。土壤添加Cr(Ⅲ)处理的水稻,在不淹水条件下水稻空壳率比较高,淹水条件下,随着土壤中添加Cr(Ⅲ)浓度水平的增加,水稻各部位Cr含量有增加的趋势,但增加不显著,秸秆最高Cr含量达到33.80 mg·kg-1,籽粒中Cr含量最高0.30 mg·kg-1。土壤固定Cr(Ⅲ)的能力远强于Cr(Ⅵ),添加Cr(Ⅵ)处理的土壤溶液中Cr(Ⅵ)的浓度很高,对水稻表现出较强的生长抑制。  相似文献   

3.
Efficiency of metabisulfite and a commercial steel wool as reducing agents in the removal of Cr(VI) from wastewaters was evaluated. Chromium(VI) was converted to Cr(III), precipitated with NaOH, and removed by filtration. A reduction of more than 1.0 × 105 and 4.0 × 105 fold in total Cr and the Cr(VI) concentrations, respectively, was observed by employing steel wool masses as low as 0.4420 g to 30-mL solutions of wastewater. Chromium(III) hydroxide obtained after the treatment was recycled and used as marker in cattle nutrition studies. The liquid residue obtained after the treatment was reused as precipitation agent replacing NaOH.  相似文献   

4.
Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils   总被引:1,自引:0,他引:1  
The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH2PO4) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.  相似文献   

5.
Reduction of Cr(VI) by peat and coal humic substances   总被引:2,自引:0,他引:2  
The reduction of Cr(VI) by humic substances from leonardite and peat was investigated by capillary zone electrophoresis at various pHs. Both humic materials reduced Cr(VI) at pH 5.4, but not at basic pH. The capacity of leonardite humic substances to reduce Cr(VI) was lower than that of peat humic substances. Fe(III) accelerated the reduction of Cr(VI) by peat humic substances, but not by leonardite humic substances. Cr(VI) reduction mechanisms are proposed. The coal humic substances seem more suitable for remediation of Cr(VI)-contaminated sites.  相似文献   

6.
The interaction between NTA and soluble Cr(VI) (K2Cr2O7) was studied by the Ames test on S. typhimurium and the sex‐linked recessive lethal test on D. melanogaster. In both systems a synergistic effect of NTA on Cr(VI) mutagenicity took place at sub‐toxic doses of Cr(VI). The synergism could depend on the action of NTA on intracellular Cr(VI) reduction, as more Cr(VI) was reduced in vitro to Cr(III) by Salmonella and Drosophila protein extracts in the presence of NTA. A similar enhancement of soluble Cr(VI) mutagenicity was produced by low doses of EDTA.  相似文献   

7.
PFRs were produced on biochar during Cr(VI) decontamination. PFRs formation on biochar was owing to the oxidization of phenolic-OH by Cr(VI). Appearance of excessive oxidant led to the consumption of PFRs on biochar. Biochar charred at high temperature possessed great performance to Cr(VI) removal. This study investigated the facilitation of Cr(VI) decontamination to the formation of persistent free radicals (PFRs) on rice husk derived biochar. It was found that Cr(VI) remediation by biochar facilitated the production of PFRs, which increased with the concentration of treated Cr(VI). However, excessive Cr(VI) would induce their decay. Biochar with high pyrolysis temperature possessed great performance to Cr(VI) removal, which was mainly originated from its reduction by biochar from Inductively Coupled Plasma Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy. And the corresponding generation of PFRs on biochar was primarily ascribed to the oxidization of phenolic hydroxyl groups by Cr(VI) from Fourier Transform Infrared Spectroscopy analysis, which was further verified by the H2O2 treatment experiments. The findings of this study will help to illustrate the transformation of reactive functional groups on biochar and provide a new insight into the role of biochar in environmental remediation.  相似文献   

8.
Cr(VI) represents an environmental challenge in both soil and water as it is soluble and bioavailable over a wide range of pH. In previous investigations, Portulaca oleracea (a plant local to the United Arab Emirates (UAE)) demonstrated particular ability for the phytoextraction of Cr(VI) from calcareous soil of the UAE. In this publication, the results of the evaluation of P. oleracea phytoextraction of Cr(VI) from UAE soil at higher concentrations are reported. P. oleracea was exposed to nine different concentrations of Cr(VI) in soil from 0 to 400 mg kg?1. The uptake of Cr(VI) increased as its concentration in soil increased between 50 and 400 mg kg?1, with the most efficient removal in the range from 150 to 200 mg kg?1. The total chromium concentrations exceeded 4600 mg kg?1 in roots and 1400 mg kg?1 in stems, confirming the role of P. oleracea as an effective Cr(VI) accumulator. More than 95% of the accumulated Cr(VI) was reduced to the less toxic Cr(III) within the plant.  相似文献   

9.
Uptake of 51Cr(III) is faster than uptake of 51Cr(VI), but it occurs mainly on the surface of the animals. Steady state is attained after 28 d. The resulting concentration factor is about 200. Although the uptake of 51Cr(VI) is slower, it is more intensively distributed into the organs and tissues of the animals. Steady state was not attained during the experiments (35 d); the highest concentration factor reached was about 10. The uptake of both 51Cr(III) and 51Cr(VI) seems to be passive. For both chemical forms of chromium, the loss rate is inversely proportional to the exposure time. When the uptake lasted longer, owing to the distribution of Cr(VI) into the organs and tissues, the loss rate of Cr(III) is somewhat faster relative to the loss rate of 51Cr(VI). The opposite is the case when the uptake of both forms lasts only two days. On the basis of the distribution and loss experiments, we argue that hexavalent chromium in living organisms is reduced to the trivalent form and then complexed with organic molecules.  相似文献   

10.
Biotransformation of Cr(VI) to less toxic Cr(III) has been known to produce insoluble Cr(III) compounds and soluble Cr(III) organic complexes. However, recent research reports have indicated that Cr(III) organic complexes are relatively stable in the environment. Little has been reported on the fate and toxic effects of Cr(III) organic compounds on organisms. In this study, the toxic effects of the soluble Cr(III) organic complexes [Cr(III) citrate, Cr(III) histidine, Cr(III) lactate and Cr(III) glutamate] to a local strain of Lactobacillus plantarum isolated from sauerkraut was investigated. Growth inhibition, viable cell count and lactic acid inhibition were measured to determine the toxicity potential of the test compounds. The EC50 values of Cr(III) citrate, Cr(III) histidine, Cr(III) lactate, and Cr(III) glutamate, calculated from the percent growth inhibition were found to be 56 mg L?1, 70 mg L?1, 81 mg L?1, and 85 mg L?1, respectively. Similar trend was observed in the viable cell counts and lactic acid production. Cr(VI) was observed to be more toxic than the Cr(III) organic compounds, while inorganic Cr(III) was the least toxic. The severity seemed to increase with increase in chromium compounds’ concentration. The results showed that Cr(III) citrate was the most toxic Cr(III) organic compound, while Cr(III) glutamate was the least.  相似文献   

11.
• Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).  相似文献   

12.
磁性纳米粒子是一种环境友好型吸附剂,广泛应用于废水中重金属的处理。目前,有不少关于纳米粒子毒性的研究,但对处理后的纳米粒子和金属的复合物的毒性却鲜有研究。本文利用纳米四氧化三铁(MNPs)吸附水中的铬离子,以人胚胎肾细胞HEK293为生物模型,通过测定细胞活力、活性氧含量以及细胞摄取量等试验,评估磁性纳米四氧化三铁吸附六价铬后的复合产物对HEK293细胞的毒性。实验结果显示:在本实验浓度和作用时间下,Cr(Ⅵ)离子能够进入细胞,产生氧化应激,并引起细胞毒性;与Cr(Ⅵ)离子相比,磁性纳米四氧化三铁吸附Cr(Ⅵ)后的修复产物MNPs/Cr(Ⅵ)对HEK293细胞无明显毒性效应,MNPs/Cr(Ⅵ)复合物在细胞内的摄取极少,只有极少数颗粒通过内吞的方式进入细胞,且没有进入细胞核内。因此,在本实验的作用浓度和时间下,利用MNPs吸附水环境中Cr(Ⅵ)后的复合物对HEK293细胞没有明显毒性,本研究为深化了解MNPs及其重金属复合物对环境的影响提供了实验依据和参考价值。  相似文献   

13.
Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been examined, particularly from the perspective of the co-presence of Cd(II) and Cr(VI) in a wastewater. Four known indigenous Cd-tolerant EAB of Ochrobactrum sp X1, Pseudomonas sp X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7 removed more Cd(II) and less Cr(VI) in the simultaneous presence of Cd(II) and Cr(VI), compared to the controls with individual Cd(II) or single Cr(VI). Response of these EAB toward exotic Cr(VI) was related to the associated subcellular metal distribution based on the sensing of fluorescence probes. EAB cell membrane harbored more cadmium than chromium and cytoplasm located more chromium than cadmium, among which the imaging of intracelluler Cr(III) ions increased over time, contrary to the decreased trend for Cd(II) ions. Compared to the controls with single Cd(II), exotic Cr(VI) decreased the imaging of Cd(II) ions in the EAB at an initial 2 h and negligibly affected thereafter. However, Cd(II) diminished the imaging of Cr (III) ions in the EAB over time, compared to the controls with individual Cr(VI). Current accelerated the harboring of cadmium at an initial 2 h and directed the accumulation of chromium in EAB over time. This study provides a viable approach for simultaneously quantitatively imaging Cd(II) and Cr (III) ions in EAB and thus gives valuable insights into the response of indigenous Cd-tolerant EAB toward exotic Cr(VI) in MECs.
  相似文献   

14.
The purpose of this study is to estimate the removal efficiency of As and Cr (VI) by one kind of industrial waste — iron chips, as well as to estimate the effects of typical inorganic anions (sulfate, phosphate, and nitrate), and typical organic anions (citrate, oxalate, and humate) on As or Cr (VI) removal. The results showed that 98% of As (V) and 92% of As (III) could be removed from aqueous phase by the iron chips within 60 min. Compared with As species, Cr (VI) was removed much more rapidly and efficiently with 97% of Cr (VI) being removed within 25 min. The removal efficiency for arsenic was in the order: As (III) (sulfate), As (III) (nitrate) or As (III), As (III) (humate), As (III) (oxalate), As (III) (citrate), As (III) (phosphate), and for chromate was in the order: Cr (VI) (sulfate), Cr (VI) (phosphate) or Cr (VI) (nitrate) or Cr (VI) (oxalate), Cr (VI), Cr (VI) (citrate), Cr (VI) (humate). In all the treatments, pH level increased with time except for As (III), the removal of which was either without anions or in the presence of humate or nitrate.  相似文献   

15.
Hexavalent chromium [Cr(VI)] bioreduction produces soluble Cr(III)-organic complexes. The Cr(III)-organic complexes are relatively stable once they are formed, and no data about their toxicity were reported. Therefore, this study aims to investigate the bioavailability and toxicity of the soluble Cr(III)-organic complexes. Saccharomyces cerevisiae L-1 wild type yeast strain was chosen as the model organism and Cr(III)-citrate was selected as the representative compound of the Cr(III)-organic complexes. The short-term chronic aquatic toxicity tests of the Cr(III)-citrate was explored by measuring growth inhibition, direct viable cell count, dry biomass, biosorption, and the amount of CO2 production. Cr(III)-citrate exerted a toxicity of 51 mg/L with an EC 50, which was calculated from the percent growth inhibition. These toxicity data would be helpful to define the toxic potential of the organo-chromium-III compounds in the environment.  相似文献   

16.
We prepared a carbonaceous sorbent for Cr(VI) from the culm of Sasa kurilensis by dehydration with concentrated H2SO4. The removal of Cr(VI) by the sorbent was highly solution pH dependent and mainly governed by physicochemical sorption. The equilibrium data fit well in the Langmuir isotherm model and indicate the endothermic nature of the Cr(VI) sorption. The desorption experiments suggest that the Cr(VI) sorption is generally irreversible, owing to strong interaction of HCrO4 with the active sites of the sorbent.  相似文献   

17.
初步研究了含有Fe(III)及丙酮酸盐的溶液在高压汞灯照射下对铬(VI)的光还原反应.考察了溶液pH值、Fe(III)浓度、丙酮酸钠浓度、Cr(VI)浓度对反应的影响.分析了光还原反应的动力学及反应机制.结果表明:铁丙酮酸盐体系能光还原Cr(VI);最佳pH为3.0;Cr(VI)光还原的初始速率随着加入的铁(III)、丙酮酸盐、Cr(VI)初始浓度的增加而增加;实验条件下的表观动力学方程为:-dCCr(VI)/dt=0.021[Cr(VI)]0.39[Fe(III)]1.05[CH3COCOONa]0.39;Fe(III)-丙酮酸盐配合物光解产生的Fe(II)是Cr(VI)的主要还原剂.  相似文献   

18.
ABSTRACT

The aim of this investigation was to examine the ability of enhanced electrokinetic (EK) remediation to efficiently remove quinoline from contaminated kaolinite soils. In order to accomplish this, the effect of a voltage gradient and anode buffer concentration on migration of quinoline in kaolinite was determined. The results showed that EK transport process effectively stimulated desorption and movement of quinoline in kaolinite. The rate and distance of migration rose with increasing voltage gradient and anode buffer concentration under certain conditions. The mechanisms that drive quinoline migration by electrodynamic processes were established as attributed to either electromigration or electroosmosis, and both played key roles in driving quinoline to migrate towards the cathode.  相似文献   

19.
A spectrophotometric procedure for the anionic diazo dye Congo red was proposed based on nanosilver catalyzed oxidation by potassium iodate in a hydrochloric acid medium. The calibration graph is linear for 0.8–240?mg?L?1, and the detection limit is 0.6?mg?L?1. Most foreign ions do not interfere with the determination, except for Cu(II), Fe(III), and Cr(VI). The interferences of Cu(II) and Fe(III) could be eliminated by masking with ethylene diamine tetraacetate, and that of Cr(VI) by reducing to Cr(III) with ascorbic acid. The typical features of this procedure are that it is sensitive for Congo red, and the determination could be carried out at room temperature. It had been used for the determination of Congo red in the Ganjnameh river water sample.  相似文献   

20.
● Improved Cr phytoextration efficiency was achieved by B. cereus inoculation. B. cereus could produce plant-beneficial PGPR factors at diverse Cr stresses. ● Enhanced resistance of inoculated L. hexandra towards elevated Cr stress. ● The majority of Cr existed in the stable forms in the tissues of L. hexandra. Phytoextraction is a promising option for purifying hexavalent chromium (Cr(VI))-laden wastewater, but the long remediation period incurred by poor growth rate of Cr hyperaccumulators remains a primary hindrance to its large-scale application. In this study, we performed a hydroponic experiment to evaluate the feasibility of promoting the growth and phytoextraction efficiency of Cr hyperaccumulator Leersia hexandra Swartz (L. hexandra) by inoculating plant growth-promoting rhizobacteria (PGPR) Bacillus cereus (B. cereus). In batch tests, the Cr(VI) removal rates of L. hexandra and B. cereus co-culture were greater than the sum of their respective monocultures. This was likely due to the microbial reduction of Cr(VI) to Cr(III), which is amiable to plant uptake. Besides, the PGPR factors of B. cereus, including indoleacetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid deamination (ACCd) activity, phosphate solubilization capacity, and siderophore production, were quantified. These PGPR factors helped explain the biomass augmentation, root elongation and enhanced Cr enrichment of the inoculated L. hexandra in pot experiments. Despite the increased Cr uptake, no aggravated oxidative damage to the cell membrane was observed in the inoculated L. hexandra. This was attributed to its capacity to confront the increased intracellular Cr stress by upregulating both the activities of antioxidative enzymes and expression of metal-binding proteins/peptides. Moreover, L. hexandra could always conserve the majority of Cr in the residual and oxalic integrated forms with low mobility and phytotoxicity, irrespective of the B. cereus inoculation. These results highlight the constructed Cr hyperaccumulator-rhizobacteria consortia as an effective candidate for decontaminating Cr(VI)-laden wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号