共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas — as alternative fuel in passenger car, truck, and bulldozer—were tested, showing the feasibility technology for LFG utilization. 相似文献
3.
李凌 《湖南环境生物职业技术学院学报》2010,16(3):5-8
城市垃圾数量大、成分复杂,如果不好好处理会对环境和人体健康造成很大危害.就城市垃圾的危害及垃圾处理现状进行了分析,并对衡阳市垃圾处理提出改进建议.参6. 相似文献
4.
This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes into account the impact of leachate recirculation. The first-order kinetics and two-stage reaction (FKTSR) model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages. In this study, the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate. Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model. The model calibration was then calculated by using the experimental data. The results suggested that the new model was in line with the experimental data. The main parameters of the modified FKTSR model, including the LFG production potential (L0), the reaction rate constant in the first stage (K1), and the reaction rate constant in the second stage (K2) of 64.746 L, 0.202 d−1, and 0.338 d−1, respectively, were comparable to the old ones of 42.069 L, 0.231 d−1, and 0.231 d−1. The new model is better able to explain the mechanisms involved in LFG generation. 相似文献
5.
The fast growing of urban areas in developing countries has brought serious problems on municipal solid waste (MSW) management. It will be rational to adopt an integrated approach to deal with such a challenge so that the overall eco-efficiency of MSW management could be improved. To better examine how attributes of integrated MSW management are being interpreted and put into practice, and to explore what changes should be made to improve the application of integrated MSW management, we employ a case study method so that lessons learned could be used to inform initiatives in other cities and the potential solution may offer feasible strategies. The case study city is Dalian, a typical seaport city with fast growing rate in economy. The outcomes of this case study show us that fragmented management structure, ineffective and inefficient enforcement of relevant regulations, backward technologies, limited financial resources and lack of public participation are main barriers for the implementation of integrated MSW management. Consequently, in order to overcome these barriers, we propose an integrated management framework on MSW management, aiming to maximize the overall eco-efficiency of MSW management. 相似文献
6.
Although Beijing has carried out municipal solid waste (MSW) source separation since 1996, it has largely been ineffective. In 2012, a “Green House” program was established as a new attempt for central sorting. In this study, the authors used material flow analysis (MFA) and cost benefit analysis (CBA) methods to investigate Green House’s environment and economic feasibility. Results showed that the program did have significant environmental benefits on waste reduction, which reduced the amount of waste by 34%. If the Green House program is implemented in a residential community with wet waste ratio of 66%, the proportion of waste reduction can reach 37%. However, the Green House is now running with a monthly loss of 1982 CNY. This is mainly because most of its benefits come from waste reduction (i.e., 5878 CNY per month), which does not turn a monetary benefit, but is instead distributed to the whole of society as positive environmental externalities. Lack of government involvement, small program scale, and technical/managerial deficiency are three main barriers of the Green House. We, thus, make three recommendations: involve government authority and financial support, expand the program scale to separate 91.4 tons of waste every month, and use more professional equipment/technologies. If the Green House program can successfully adopt these suggestions, 33.8 tons of waste can be reduced monthly, and it would be able to flip the loss into a profit worth 35034 CNY.
相似文献