首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg?L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW?cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh?m–3?order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg?L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ?OH was formed under visible light, and ?O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.
  相似文献   

2.
Bio-diffusion mixing rates (Db) were estimated from depth profiles of excess 210Pb and 137Cs in three sediment cores collected from Mumbai Harbour Bay (MHB) using a steady state vertical advection - diffusion model. The mean of 210Pb and 137Cs derived Db values along the studied area were obtained to be about 23 and 36 cm2y?1 respectively. These derived values were within the range of literature values reported for other equivalent environment internationally. The relatively higher Db values for 137Cs profiles demonstrated that particles have diffused more intensely within the surface layer of sediments over 1 year. Conversely, low Db values for 210Pb indicate slow mixing rates in the sediment profile which might be resulted from low 210Pb flux and diffusion of 222Rn to the seafloor. The significant differences between 210Pb and 137Cs derived Db values among cores indicate that there appeared to be as regional differences in sediment properties and local variability in the intensity of seafloor mixing. Furthermore, Db values also depend on differences in characteristic time and depth scales of radionuclides in cores, benthic fauna abundances, organic carbon flux to the sediments and primary production in overlying surface waters. Comparison of 210Pb derived Db values with those calculated from 137Cs distributions reveals better agreement for core 2 than core 1 and 3. The agreement may be fortuitous because 137Cs appears significantly deeper than 210Pb in all cores. It was also observed that Db values increases as sediment accumulation rate increases for both radionuclide.  相似文献   

3.
The fate of imidacloprid was investigated in tomato plants during 75 days in soil contaminated by 14C-imidacloprid. Leaves and fruits were separately analysed for total radioactivity and metabolites. Almost 85% of plant radioactivity was translocated to shoots. Radioactivity concentrations decreased from bottom leaves to top leaves. Desnitro-imidacloprid was the main metabolite in leaves. Nevertheless, more than 50% of the leave radioactivity corresponded to imidacloprid. Residue concentrations were similar in all fruits (62.9 ng g−1), irrespective of their position on plant. In fruits more than 85% of the radioactivity was due to imidacloprid. The small fraction of residues translocated to fruits depended on the low xylem flow in fruits.  相似文献   

4.
Summary. Sequestration and processing of pyrrolizidine alkaloids (PAs) by leaf beetles of the genus Platyphora were investigated. Tracer experiments with labeled alkaloids were performed with P. eucosma feeding on Koanophyllon panamense (Asteraceae, tribe Eupatorieae). P. eucosma catalyzes the same reactions previously demonstrated for P. boucardi specialized to Prestonia portobellensis (Apocynaceae): (i) epimerization of rinderine to intermedine; (ii) esterification of retronecine yielding insect-specific PAs; (iii) efficient transport of the PAs as free bases into the defensive secretions. P. bella feeding on Tournefortia cuspidata (Boraginaceae) shows the same sequestration behavior and ability to synthesize the specific retronecine esters. P. ligata, a species phylogenetically closely related to the PA adapted species and clustering in the same clade, but feeding on a host plant devoid of PAs, feeds easily on PA treated host-plant leaves, but does not sequester or metabolize PAs. P. kollari a species clustering outside the PA clade refused to feed on its food-plant leaves painted with PAs. The results are discussed in relation to host-plant selection of the PA adapted species and the role of PAs in chemical defense. Received 20 September 2002; accepted 18 November 2002.  相似文献   

5.
Soil pH, a log-transformed form of hydrogen ion (H+) activity, is often used for various statistics. However whether soil pH meets the requirement of distribution normality for statistical analyses is unknown. We studied the statistical suitability of both soil pH and H+ activity by examining their distribution normalities. Results show that the variability of H+ activity is higher and its distribution is skewer, which is significantly different from the normal and soil pH, regardless of soil conditions and analytical methods. Here we demonstrate that soil pH is more appropriate than the H+ activity for performing statistical analysis in terms of distribution normality.  相似文献   

6.
In this work, Er3+:YAlO3/TiO2 composite was synthesized by a ultrasonic dispersion and liquid boil method. The Er3+:YAlO3/TiO2 composite and pure TiO2 powder were characterized by XRD. The degradation of different organic dyes was used to evaluate the photocatalytic activity of the Er3+:YAlO3/TiO2 composite. It is found that the photocatalytic activity of Er3+:YAlO3/TiO2 composite is much higher than that for the similar system with only TiO2. Moreover, this Er3+:YAlO3/TiO2 composite provides a new way to take advantage of TiO2 in sewage treatment aspects using solar light.  相似文献   

7.
The aim of this work was to develop a method to assess the microbial accessibility of native phenanthrene present in soils and sediments. We developed an accelerated biodegradation assay, characterized by (a) inoculation with a sufficient number of phenanthrene-degrading microorganisms, (b) monitoring of the biodegradation activity through 14C-mineralization measurements, and (c) single-step chemical analysis of the native compound in the residue. The use of 14C-labeling allowed the determination of the time period needed for biodegradation of the bioaccessible fraction of the native chemical. The method was tested with environmental samples having a wide range of phenanthrene concentrations, i.e., from background levels (μg kg-1) originating in soil from atmospheric deposition, to acute concentrations (g kg-1) corresponding to industrial pollution of soils and sediments. The results showed a wide range of bioaccessibility (15–95% of the initial amount). The method can be used for the assessment of bioaccessibility involved in the management of polycyclic aromatic hydrocarbon (PAH) pollution.  相似文献   

8.
9.
Hydrothermal areas are potentially hazardous to humans as volcanic gases such as radon (222Rn) are continuously released from soil diffuse degassing. Exposure to radon is estimated to be the second leading cause of lung cancer, but little is known about radon health-associated risks in hydrothermal regions. This cross-sectional study was designed to evaluate the DNA damage in the buccal epithelial cells of individuals chronically exposed to indoor radon in a volcanic area (Furnas volcano, Azores, Portugal) with a hydrothermal system. Buccal epithelial cells were collected from 33 individuals inhabiting the hydrothermal area (Ribeira Quente village) and from 49 individuals inhabiting a non-hydrothermal area (Ponta Delgada city). Indoor radon was measured with Ramon 2.2 detectors. Chromosome damage was measured by micronucleus cytome assay, and RAPD-PCR was used as a complementary tool to evaluate DNA damage, using three 10-mer primers (D11, F1 and F12). Indoor radon concentration correlated positively with the frequency of micronucleated cells (r s = 0.325, p = 0.003). Exposure to radon is a risk factor for the occurrence micronucleated cells in the inhabitants of the hydrothermal area (RR = 1.71; 95% CI, 1.2–2.4; p = 0.003). One RAPD-PCR primer (F12) produced differences in the banding pattern, a fact that can indicate its potential for detecting radon-induced specific genomic alterations. The observed association between chronic exposure to indoor radon and the occurrence of chromosome damage in human oral epithelial cells evidences the usefulness of biological surveillance to assess mutations involved in pre-carcinogenesis in hydrothermal areas, reinforcing the need for further studies with human populations living in these areas.  相似文献   

10.
Here we show that the photolysis of FeCl2+ upon UV irradiation of Fe(III) at pH 0.5, yielding Cl and then Cl2−•, upon further reaction with Cl, induces phenol degradation. The photolysis of FeCl2+ can be highlighted and studied as the huge interference by FeOH2+ can be avoided under such conditions. Our data allowed the assessment of a photolysis quantum yield for FeCl2+ of 5.8 × 10−4 under UVA irradiation, much lower compared to the literature value of 0.5. The discrepancy can be explained if the photolysis process is efficient but photoformed Fe2+ and Cl undergo recombination inside the solvent cage.  相似文献   

11.
Kin selection models of intracolonial conflict over the maternity of males predict that social hymenopteran workers should favour the production of sons and nephews over brothers when the effective mating frequency (me) of the queen is low (me<2) but that they should police other workers' reproductive efforts and favour the production of brothers when me>2. Stingless bees have been used to support these models in that me within the group is considered low and workers are thought often to monopolise the parentage of males. We genetically analysed 20 worker and 20 male pupae from each of 10 colonies of the stingless bee Scaptotrigona postica (= Scaptotrigona aff. depilis) using six microsatellite loci and demonstrate queen monandry in eight nests and apparent low me in the other two. However, four colonies contained an additional matriline, possibly due to queen supersedure (serial polygyny), which complicated their genetic structure. Across colonies, workers were responsible for the maternity of 13% of all males. These data are broadly in agreement with predictions from kin selection theory, though the question remains open as to why workers do not secure a greater share of male maternity in this and other stingless bee species in which workers are more closely related to nephews than brothers.  相似文献   

12.
Microgrowth patterns and the oxygen isotope composition of juvenile, shallow-marine bivalve mollusk shells of Phacosoma japonicum (Reeve) in Japan were analyzed and cross-calibrated with environmental parameters. Mark-and-recovery experiments indicate that a pair of two microgrowth lines and two microgrowth increments is produced every lunar day. This finding makes it possible to assign exact calendar dates to each portion of the shell. Average daily growth rates decrease by 61% from age two to three and 55% from age three to four. The length of the growing season and the growth rate are mainly controlled by temperature: shell growth ceases below 14.2°C (age two) and 16.8°C (age four) and is most rapid between 24.6°C and 27.2°C. Based on local temperature cycles, the growing season is longest in Seto Inland Sea, central Honshu (from May to November) and shortest at Hakodate Bay, North Japan (from June to October). The annual oxygen isotope profiles of the shells reflect the temperature cycle and the varying amounts of freshwater added to the seawater by precipitation. The most negative '18O values of -3.15‰ occur during the rainy season, i.e. during the monsoon and typhoon seasons. Growth rates are only slightly affected by salinity changes. Strongly reduced growth rates during the second half of the year at Seto Inland Sea and to a lesser extent at Tokyo Bay are explained by nutrient deprivation. Our study provides the basis for the use of P. japonicum in high-resolution ecological studies and environmental reconstructions.  相似文献   

13.
A new and efficient synthetic route to fluorescent and 14C-double-labeled silica-based nanoparticles (NPs) is described. The synthesis has been carried out using the “oil-in-water” micro-emulsion technique. Fluorescent and radioactive labeling have been achieved entrapping labeled poly(ethylene glycol) (PEG) molecules in the NPs. The produced particles have been analyzed by means of scanning electron microscopy, photon correlation spectroscopy, confocal microscopy, scintillation counting and oxidation/combustion experiments. Fluorescence quenching experiments confirm that the label is entrapped in the particles. The results presented suggest that the silica matrix does not block the β-radiations emitted from the labeled PEG molecules entrapped in the NPs.  相似文献   

14.
Radon (222Rn) and carbon dioxide were monitored simultaneously in soil air under a cool-temperate deciduous stand on the campus of Hokkaido University, Sapporo, Japan. Both 222Rn and CO2 concentrations in soil air varied with atmospheric (soil) temperature in three seasons, except for winter when the temperature in soil air remained constant at 2–3°C at depth of 80 cm. In winter, the gaseous components were influenced by low-pressure region passing through the observation site when the ground surface was covered with snow of ~1 m thickness. Carbon isotopic analyses of CO2 suggested that CO2 in soil air may result from mixing of atmospheric air and soil components of different origins, i.e. CO2 from contemporary soil organic matter and old carbon from deeper source, to varying degrees, depending on seasonal meteorological and thus biological conditions.  相似文献   

15.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

16.
We studied the hydrolysis of gas-phase carbon tetrachloride (CCl4), chloroform (CHCl3), and dichloromethane (CH2Cl2) over a metallic Fe surface for its application in combination with air stripping and soil vapour extraction. The effects of chlorocarbon concentration, type and preparation of the iron-containing material, humidity, and temperature on process performance are reported. The hydrolysis of chlorinated methane derivatives is catalysed by metallic iron resulting in a noticeable decrease of the reaction temperature. The reaction kinetics were found to be consistent with the Langmuir-Hinshelwood model.  相似文献   

17.
We observed a pronounced, yet reversible tissue reduction in the tropical sponge Aplysinella sp. under non-experimental conditions in its natural habitat, after transfer into seawater tanks, as well as after transplantation from deep to shallow water in the field. Tissue reduction resulted in the formation of small “reduction bodies” tightly attached to the sponge skeleton. Although volume loss and gain were substantial, both tissue reduction and regeneration were often remarkably rapid, occurring within few hours. Microscopic analysis of the reduction bodies revealed morphological similarities to previously described sponge primmorphs, with densely packed archaeocytes and spherulous cells enclosed by a thin layer of epithelial-like cells. Denaturing gradient gel electrophoresis (DGGE) revealed pronounced changes in the sponge-associated microbial community upon tissue reduction during laboratory and field experiments and following changes in ambient conditions after transplantation in the field. Generally, the microbial community associated with this sponge proved less stable, less abundant, and less diverse than those of other, previously investigated Verongid sponges. However, one single phylotype was consistently present in DGGE profiles of Aplysinella sp. This phylotype clustered with γ-proteobacterial sequences found previously in other sponge species of different taxonomic affiliations and geographic provenances, as well as in sponge larvae. No apparent changes in the total secondary metabolite content (per dry weight) occurred in Aplysinella sp. upon tissue reduction; however, comparative analysis of intact and reduced tissue suggested changes in the concentrations of two minor compounds. Besides being ecologically interesting, the tissue reduction phenomenon in Aplysinella sp. provides an experimentally manipulable system for studies on sponge/microbe symbioses. Moreover, it may prove useful as a model system to investigate molecular mechanisms of basic Metazoan traits in vivo, complementing the in vitro sponge primmorph system currently used in this context.  相似文献   

18.
Highly symmetrical molecules such as CH4, CF4 or SF6 are known to be atmospheric pollutants and greenhouse gases. High-resolution spectroscopy in the infrared is particularly suitable for the monitoring of gas concentration and radiative transfers in the earth's atmosphere. This technique requires extensive theoretical studies for the modeling of the spectra of such molecules (positions, intensities and shapes of absorption lines). Here, we have developed powerful tools for the analysis and the simulation of absorption spectra of highly symmetrical molecules. These tools have been implemented in the spherical top data system (STDS) and highly-spherical top data system (HTDS) software available at http://www.u-bourgogne.fr/LPUB/shTDS.html. They include a compilation of modeled data obtained during the last 20 years. An overview of our latest results in this domain will be presented. Electronic Publication  相似文献   

19.
N2O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N2O formation over Pt/BaO/Al2O3 catalyst. Three types of catalysts, Pt/BaO/Al2O3, Pt/Pd mechanical mixing catalyst (Pt/BaO/Al2O3 + Pd/Al2O3) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al2O3) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H2/CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H2-TPR techniques. In addition, temperature programmed reactions of NO with H2/CO were conducted to obtain further information about N2O formation mechanism. Compared with Pt/BaO/Al2O3, (Pt/BaO/ Al2O3 + Pd/Al2O3) produced less N2O and more NH3 during NO x storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al2O3 + Al2O3). Temperature programmed reactions of NO with H2/CO results showed that Pd/Al2O3 component in (Pt/BaO/Al2O3 + Pd/Al2O3) played an important role in NO reduction to NH3, and the formed NH3 could reduce NO x to N2 leading to a decrease in N2O formation. Most of N2O formed over (Pt-Pd/BaO/Al2O3 + Al2O3) was originated from Pd/BaO/Al2O3 component. H2-TPR results indicated Pd-Ba interaction resulted in more difficultto- reduce PdOx species over Pd/BaO/Al2O3, which inhibits the NO dissociation and thus drives the selectivity to N2O in NO reduction.
  相似文献   

20.
Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NO x with NH3. A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Brunauer–Emmett–Teller (BET) surface area analysis, H2 temperatureprogrammed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH3-SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO2-CeO2 binary oxide for the low temperature NH3-SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO2 and H2O. Cr-Zr-Ce mixed oxide exhibited>80% NO x conversion at a wide temperature window of 100°C–300°C. In situ DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence of Cr6 +. The present mixed oxide can be a candidate for the low temperature abatement of NO x .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号