首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The impact of weather on air pollution was examined and evaluated for the city of Athens, Greece. We used an objectively defined synoptic classification scheme consisting of six summer and eight winter circulation types. This scheme was established using a combination of both factor and cluster analysis during 1954-1999. Surface and isobaric levels of 850 hPa data were used. Factor analysis combined with cluster analysis was used to derive circulation types based on surface meteorological data for the period 1954-1999 in Athens and on surface pressure grid data. The city was divided into three sectors according to the financial and social activities of the residents. To examine the spatial characteristics of pollutant concentrations over Athens for each synoptic type, the synoptic circulation types were then correlated with both gaseous and particulate pollutant concentrations measured in each sector between 1983 and 1999. Finally, extreme and severe episodic events were studied in terms of their meteorological and synoptic characteristics.  相似文献   

3.
Laboratory and atmospheric sampling studies were performed to evaluate glass fiber, quartz and Teflon filters for their abilities to form artifact particulate sulfate and nitrate with SO2and HNO3, respectively. The glass fiber filters were the types employed by the U.S. EPA as well as many State and local agencies for hi-vol particle sampling in the period 1977–1982.In 24-h laboratory trials, the sulfate artifact with the glass fiber filters ranged from 32 to 59μgcm−2 (8–15μg m−3 at simulated hi-vol sampling rates). With the exception of Whatman QMA, the ‘quartz’ and Teflon filters collected very low levels of SO2. At nitric acid dosages representative of those in atmospheric sampling, the glass fiber filters retained > 94% of the HNO3; the ‘quartz’ filters, 33 to > 99%; and Teflon filters, <2 % of the HNO3,. Because of competing acidic species in ambient air, these represent upper limits to the values to be expected in atmospheric sampling. Over the dosage range evaluated, artifact particulate sulfate and nitrate formation on ‘quartz’ and Teflon filters were highly correlated to each other from one filter to another, with a 4:1 molar ratio of nitrate: sulfate.The sulfate artifact in atmospheric sampling with Pallflex ‘quartz’ filters was consistent with laboratory findings while the nitrate artifact was much lower than predicted.  相似文献   

4.
A series of experiments was performed at the oil-fired Anclote power plant of the Florida Power Corp., Tarpon Springs, Florida. Plume samples at varying downwind locations were obtained by means of a high-volume filter pack. Operational oxygen levels during fuel combustion were varied experimentally; particulate sulfate and sulfuric acid concentrations in both flue gas and plumes increased directly with excess O2 levels. Plume dropout of paniculate sulfate was found to occur during some experiments. A generalized trend toward increasing ammonium content of plume particulates with time was observed. Particulate nitrate formation did not indicate a similar trend. Oxidation of SO2 to sulfate within a time frame of up to 100 min and 50 km ranged within 1–3 %, with but two runs exceeding 3 %. No correlation was found between any individual meteorological parameter and extent of oxidation. A significant difference between conversions during summer and winter runs was observed, conceivably attributable to differences in the vanadium content of the fuel oils and to some extent the combination of higher temperature, relative humidity, water partial pressure and unstable weather during the summer.  相似文献   

5.
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air.  相似文献   

6.
On Virginia Key, Miami, Florida, 257 rainwater samples were collected on a event basis from May 1982 to April 1985. At the same site, 171 aerosol samples were collected throughout 1984. All of these samples were analyzed for nitrate, non-sea-salt (NSS) sulfate and sodium to assess the temporal variations in the concentrations and to determine the washout ratios of each of the constituents. The annual volume-weighted mean concentrations in rainwater are: nitrate—0.51 μg ml−1; NSS sulfate—0.74 μg ml−1; Na—1.93 μg ml−1. Only sodium exhibited a significant seasonal cycle; its concentrations were markedly higher during the winter. In aerosols, the mean concentrations are: nitrate—1.9 μg m−3; NSS sulfate—2.8 μg m3; Na—3.7 μg m−3. Nitrate and NSS sulfate exhibit consistent seasonal cycles with concentrations being significantly higher during the winter and spring. We estimate that wet deposition accounts for the majority of the total fluxes of each constituent: 80% for nitrate, 95 % for NSS sulfate, and 67% for Na. Annual washout ratios at Virginia Key arc similar for nitrate and NSS sulfate, 330 and 290, respectively. That for Na is about a factor of two higher, 550. Comparable long-term ratios were calculated for American Samoa based on aerosol data from the SEAREX program and rainwater data from the National Atmospheric Deposition Program: 270 for nitrate, 420 for NSS sulfate, and 520 for Na. The comparability of the Virginia Key and Samoa results suggest that these ratios may be applicable over a wide area of the world ocean. Estimates from nonconcurrent data for the washout ratios at Bermuda were factors of two to four higher. Regression equations for washout ratio vs event rainfall (logW = loga + blogR) at Virginia Key were essentially the same for all three constituents with ‘a’ ranging from 1100 to 1300 and ‘b’ ranging from −0.26 to −0.29. The coefficients for American Samoa were markedly different: ‘a’ ranged from 2900 to 3600 and ‘b’ ranged from −0.51 to −0.56.  相似文献   

7.
Fine particle nitrate concentrations were measured at 10-min intervals for approximately 9.5 months beginning on 14 February 2002, at the Baltimore Supersite Ponca St. location using an R&P 8400N semi-continuous monitor. The measurement results were used to characterize seasonal and shorter-term excursions in nitrate concentrations and determine their influence on PM2.5 concentrations. Over the 9.5-month study period, nitrate levels of 1.7±1.6 μg m−3 accounted for 11.4% of the PM2.5 mass. Monthly averages ranged from 0.8 μg m−3 in August to 2.9 μg m−3 in November, and accounted for 4.7–17.3% of monthly PM2.5 mass. Hourly averages, however, were often larger, especially in the colder months, owing to numerous relatively short-term transients, where hourly nitrate concentrations exceeded 5.0 μg m−3. These often occurred along with NOx and ultrafine particle transients during the morning commute hours.A total of 275 short-term transients (31.7% of the total) exceeding 1.0 μg m−3 were identified. These were associated with one of three sets of conditions. The first, most typical (177, i.e. 64.4% of the 275 incidences), is characterized by high NOx typically between 0500 and 0800EST and is attributed to early morning commute traffic activity. The second type occurred during the afternoon due to photochemical activity. The excursions in the afternoon occurred infrequently (only 9.5% of all the observed transients) during the study period and were characterized by less elevated nitrate concentrations than morning and nighttime transients. The third (72, i.e. 26.2% of the 275 transients) occurred at night, typically between 2000EST and 0200EST.Multiple linear regression analysis between nitrate excursions and volume size distributions indicates that particulate nitrate observed is closely related to the near accumulation (0.1–0.2 μm) and droplet modes (0.5–1.0 μm) in the morning hours, and associated with the droplet (0.5–1.0 μm) and coarse modes (1.0–2.5 μm) for nighttime transients, suggesting that processes governing particulate nitrate formation depend on time-of-day.  相似文献   

8.
Measurements are presented on the scavenging of sulfate and nitrate by cumulus, stratus and strato-cumulus clouds. Assuming that all of the particulate sulfate was in the size range 0.1–1.0 μm radius and that sulfate was scavenged with the same efficiency as sub-micrometer particles in general, the nucleation scavenging coefficient of sulfate in these clouds was deduced to be 0.7 ±0.2 and evidence for sulfate production (1.0±0.3 μgm−3) within cloud water was also obtained. Evidence for nitrate scavenging, by nitrates serving as cloud condensation nuclei or by the absorption of HNO3 by cloud droplets, is also presented. The data suggest that either gaseous nitrogen compounds in the air other than HNO3 can dissolve and contribute to the nitrate concentration in cloud water or that nitrate can be produced within cloud droplets.  相似文献   

9.
10.
Relatively little prior use has been made of information theory in air quality analysis. This paper explores whether basic, but formal, quantitative measures of information content might yield fresh perspectives on seasonal variations in the ground-level ozone concentration field across the lower Fraser Valley (LFV), British Columbia, Canada. I calculate Shannon entropy in daily maximum ozone concentration on a month-by-month, station-by-station basis, using 1 year of hourly measurements from 18 air quality monitoring stations. The values are then qualitatively compared with an eye to identifying spatial and seasonal patterns. The results further demonstrate the potential utility of information theoretic concepts for assessing air quality variability; yield some new insight into tropospheric ozone dynamics across the LFV; and may provide some guidance to the refinement of monitoring network configuration. Of particular note is that, although entropy and mean concentration exhibit some similarities in their respective seasonal patterns, maximum uncertainty and information content appears to occur at times and locations somewhat different from those at which highest concentrations are experienced.  相似文献   

11.
A thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium (SCAPE2), was used to investigate the response of fine particulate NO3(-) to changes in concentrations of HNO3, NH3, and SO4(2-) in the southeastern United States. The data consisted of daily, 24-hr time resolution measurements from the Aerosol Research Inhalation Epidemiology Study (ARIES) Jefferson Street (Atlanta) site and five other sites of the Southeastern Aerosol Research and Characterization Project (SEARCH). Reductions of total NH3 (gas-phase NH3 plus particulate NH4(+)), total NO3(-) (HNO3 plus particulate NO3(-)), SO4(2-), or combined total NO3(-) (HNO3 plus particulate NO3(-)) with SO4(2-) were used to estimate the effects of changing emission levels. The conversion of SO2 to SO4(2-) and NO2 to HNO3 involves additional nonlinear reactions not incorporated into the model. For all sites, fine particulate NO3(-) concentrations decreased in response to reductions of either NH3 or total NO3(-), but the particulate NO3(-) decreases were greater for the NH3 reductions than for the total NO3(-) reductions. Particulate NO3(-) concentrations increased in response to reductions of SO4(2-). For the combined reduction (total NO3(-) plus SO4(2-)), the resulting particulate NO3(-) concentrations were on average no different than the base-case NO3(-) levels. Measurements of fine particulate NO3(-) and HNO3 support the modeling conclusions and indicate that particulate NO3(-) formation is limited by the availability of NH3 at most times at all SEARCH sites.  相似文献   

12.
Dry deposition contributes a substantial part of the total deposition of acidic pollutants and acid precursors to agricultural systems. However, because of the relative intractability of measurement of dry deposition fluxes, little work has been done to directly quantify dry inputs of pollutants to crops. In this research, foliar surface sampling ('leaf-washing') methods were developed and shown to be a practical and fairly precise means of monitoring the accumulation of dry-deposited SO4(2-) and NO3- on plant surfaces. Leaching of these ions from plant tissues was shown to be negligible; however, uptake by plants (e.g. stomatal gas exchange of SO2 or HNO3 and/or assimilation of surface accumulations of materials) is not accounted for by the sampling method. The significance of dry deposition to modification of the chemical microenvironment of leaf surfaces appears to be a factor of 3 to 20 or more greater than that of wet deposition alone. This is due to the cyclic reactivation of accumulated materials by dew and light rains, which may dissolve and mobilize, but not remove, the pollutant surface deposit. Therefore, while dry deposition of SO2 and SO4(2-) containing particles may contribute only part of the total mass of sulfur inputs to crop systems, the exposure of plant surface tissue to pollutants can be dominated by the dry-deposited material. The alteration of leaf surface chemistry may contribute to possible stress-producing mechanisms such as reduction of cuticular integrity, cellular injury and death, enhanced leaching of primary and secondary metabolites, and changes in pathogen infection efficiency.  相似文献   

13.
Few studies have been made regarding carbonyl concentrations in Monterrey, México. The Monterrey Metropolitan Area (MMA) has the third largest population in the country and has increasing pollution issues. The concentrations of 10 aldehydes and two ketones were measured in the MMA, in the spring and fall of 2011 and 2012. Formaldehyde (16–42 ppbv) was the most abundant carbonyl, followed by acetaldehyde (5–15 ppbv) and acetone (7–15 ppbv). The concentrations showed marked diurnal trends with maximum values between 10:00 a.m. and 2:00 p.m., when photochemical activity is intense. Thus, secondary production of carbonyls is statistically significant in the city. Biogenic production of several carbonyls, such as 2-butanone, was supported by their mid correlation with solar radiation and low correlation with propionaldehyde, which is mainly emitted by anthropogenic sources. The seasonal variability of the concentrations was observed in the first three samplings, with the highest levels reached in the fall. The rainy conditions during the fourth sampling did not allow comparison. Carbonyl–NOx–O3 analysis was made. Results indicated a carbonyl-sensitive atmosphere, especially during the midday samplings of 10:00 a. m. to 2:00 p.m. and 2:00 p.m. and 6:00 p.m. because of the intense solar radiation during these periods.

Implications:?Monitoring of carbonyls in Monterrey, Mexico, was performed to quantify the pollutant concentration in the city’s atmosphere. Although primary emission is significantly important, the secondary production of the pollutants, along with ozone production being carbonyl sensitive, indicates that air pollution controls must address the direct sources and the precursors of the pollutants to achieve air quality.  相似文献   

14.
Filter-based methods for sampling aerosols are subject to great uncertainty if the gas–particle interactions on filter substrates are not properly handled. Sampling artifacts depend on both meteorological conditions and the chemical mix of the atmosphere. Despite numerous of studies on the subject, very few have evaluated filter-based methods in the Asian environments. This paper reports the results of a comparison of the performances of two filter-based samplers, including a Thermo Anderson Chemical Speciation Monitor (RAAS) and a honeycomb denuder filter-pack system, a Micro Orifice Uniform Deposit Impactor (MOUDI) and a real-time ambient ion monitor (AIM, URG9000B) in measuring atmospheric concentrations of PM2.5 sulfate and nitrate. Field studies were conducted at an urban site in Jinan, Shandong province, during the winter of 2007 and at a rural site near Beijing in the summer of 2008. The AIM was first compared with the honeycomb denuder filter-pack system which was considered to have minimal sampling artifacts. After some modifications made to it, the AIM showed good performance for both sulfate and nitrate measurement at the two sites and was then used to evaluate other instruments. For the un-denuded RAAS, the extent of sampling artifacts for nitrate on quartz filters was negligible, while that on Teflon filters was also minimal at high nitrate concentrations (>10 μgm?3); however, loss through evaporation was significant (~75%) at low nitrate concentrations under hot summer conditions. The MOUDI using aluminum substrates suffered a significant loss of nitrate (50–70%) under summer conditions due to evaporation. Considering that the aluminum substrates are still being widely used to obtain size-resolved aerosol compositions because of their low cost and accurate mass weighed, caution should be taken about the potential significant under determination of semi-volatile components such as ammonium nitrate.  相似文献   

15.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

16.
Carbonaceous aerosol concentrations were determined for total suspended particle samples collected from Muztagh Ata Mountain in western China from December 2003 to February 2006. Elemental carbon (EC) varied from 0.004 to 0.174 μg m?3 (average = 0.055 μg m?3) while organic carbon (OC) ranged from 0.12 to 2.17 μg m?3 and carbonate carbon (CC) from below detection to 3.57 μg m?3. Overall, EC was the least abundant fraction of carbonaceous species, and the EC concentrations approached those in some remote polar areas, possibly representing a regional background. Low EC and OC concentrations occurred in winter and spring while high CC in spring and summer was presumably due to dust from the Taklimakan desert, China. OC/EC ratios averaged 10.0, and strong correlations between OC and EC in spring–winter suggest their cycles are coupled, but lower correlations in summer–autumn suggest influences from biogenic OC emissions and secondary OC formation. Trajectory analyses indicate that air transported from outside of China brings ~0.05 μg m?3 EC, ~0.42 μg m?3 OC, and ~0.10 μg m?3 CC to the site, with higher levels coming from inside China. The observed EC was within the range of loadings estimated from a glacial ice core, and implications of EC-induced warming for regional climate and glacial ice dynamics are discussed.  相似文献   

17.
The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental outflow from Eurasia. The same tendency is not found for SO4(2-).  相似文献   

18.
Monthly nitrogen isotopes of ammonium and nitrate in wet deposition in the city of Guangzhou, and the causes of their variability, are reported in this paper. Nitrate δ15N showed nearly constant values around zero in the dry season (October to April), but oscillating values from negative to positive in the rainy season (May to September). By contrast, ammonium δ15N displayed lower values during the rainy season than in the dry season. The rural area north of the city was considered as the prominent source of ammonium and nitrate in spring and early summer (May and June), as suggested by their concurrent negative isotopic trends and higher NH4+/NO3? ratios. From July to September, different dominating sources from the city, i.e., fossil fuel combustion for nitrate, and sewage and waste emission for ammonium, caused disparate δ15N trends of the two species, showing positive nitrate δ15N, but still negative ammonium δ15N. During the cool dry season, the high values of ammonium δ15N and concurrently low NH4+/NO3? ratios suggested the decrease in NH3 volatilization and relatively important thermogenic origin of ammonium, but the intermediate nitrate δ15N values around zero may be a result of a balanced emission of NOx from the city and the rural areas. The isotopic effects of chemical conversion of NOx to nitrate and washout of nitrate were ruled out as significant causes of nitrate δ15N variability, but ammonium washout, during which 15N is assumed to be preferentially removed, may partly contribute to the ammonium δ15N variability.  相似文献   

19.
Motor vehicle exhaust emissions are one of the major causes of air quality deterioration in most of the cities of the developing world. Carbon monoxide (CO) and nitrogen dioxide (NO2) are significant contributors to this adverse effect on the environment. This study analyses air quality data for three years from 1997 to 1999, at two air quality control regions in Delhi city. The regions are a major traffic intersection and the moderately busy straight Khelgaon Marg road. The data were obtained from the Central Pollution Control Board (CPCB), Delhi. The results show that the highest ground-level concentrations of CO and NO2 occurred during winter (November to March) and the lowest during the tropical monsoon period (July to September) at both regions. Typical average monthly, weekly and diurnal cycles of CO at both regions have also been analysed, and show that CO concentrations are higher at the intersection than along the road. Further, the monthly average NO2 concentrations were also found to be higher at the intersection.  相似文献   

20.
The concentrations of Cd, Pb, Zn and Ni were measured in the leaves of 7 species of deciduous trees, from the urban sites of Istanbul, in both the Spring and Autumn seasons. We detected some differences in the heavy metal concentrations of the control and urban site samples of identical species. Highest concentrations of Cd were detected in Populus, Pb in Aesculus and Robinia, Zn in Populus, and Ni in Robinia and Fraxinus. Lowest chlorophyll content and highest peroxidase (POD) activity was found in the urban site samples of Acer. We have found a positive correlation between the increase in the POD activity and the Pb concentration in Populus. Generally, the tree species investigated in this study, are considered to have different tolerance levels to heavy metal pollution. The data obtained show that the chlorophyll content and the POD activity may be used as heavy metal stress biomarkers in the urban trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号