首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Replicate clutches of larvae were swum in a swimming flume at 4, 7, 10, 13, and 16 cm s-1 and the time swum until exhaustion recorded. There was a significant relationship between sustained swimming time and swimming speed for both maximum (R2=0.77; P<0.05) and mean sustained swimming times (R2=0.78; P<0.05), with fish swimming at slower speeds swimming longer and covering greater total distances. The relationship observed agrees with theoretical principles relating increasing swimming speed with increasing drag. We used our data for Amphiprion melanopus, combined with published information, to predict the swimming speeds that other reef fish taxa should be able to maintain for significant lengths of time (12-48 h) using three different models. The results agree well with field estimates (R2 values from 0.45 to 0.84), suggesting that there may be underlying factors influencing swimming ability in reef fish larvae that can be used to predict swimming abilities of different taxa. These models suggest that sustained swimming behaviour by reef fish larvae could have a much greater impact on modifying larval dispersal than previously thought.  相似文献   

2.
Measurements of routine swimming speed, tail-flip escape responses, and oxygen consumptions were made of the deep-sea shrimp Acanthephyra eximia using autonomous landers in the Rhodos Basin at depths of up to 4,400 m and temperatures of 13–14.5°C. Routine swimming speeds at 4,200 m averaged 0.18 m s–1 or 3.09 body lengths s–1, approximately double those of functionally similar oceanic scavengers. During escape responses peak accelerations of 23 m s–2 or 630.6 body lengths s–2 were recorded, with animals reaching speeds of 1.61 m s–1 or 34.8 body lengths s–2. When compared to shallow-water decapods at similar temperatures these values are low for a lightly calcified shrimp such as A. eximia despite a maximum muscle mass specific power output of 90.0 W kg–1. A preliminary oxygen consumption measurement indicated similar rates to those of oceanic crustacean scavengers and shallower-living Mediterranean crustaceans once size and temperature had been taken into account. These animals appear to have high routine swimming speeds but low burst muscle performances. This suite of traits can be accounted for by high competition for limited resources in the eastern Mediterranean, but low selective pressure for burst swimming due to reductions in predator pressure.Communicated by J.P. Thorpe, Port Erin  相似文献   

3.
The swimming abilities of larval fishes are important for their survival, potentially affecting their ability to avoid predators, obtain food and control dispersal patterns. Near settlement swimming abilities may also influence spatial and temporal patterns of recruitment. We examined Critical speed (U-crit) swimming ability in late stage larvae of 89 species of coral reef fishes from the Great Barrier Reef and the Caribbean. Coefficients of variation in U-crit calculated at the individual level were high (28.4%), and this was not explained by differences in size or condition factor of these same larvae. Among species U-crit ranged from 5.5 cm s−1 to 100.8 cm s−1 (mean=37.3 cm s−1), with 95% of species able to swim faster than the average current speed around Lizard Island, suggesting that most species should be capable of influencing their spatial and temporal patterns of settlement. Inter-specific differences in swimming ability (at both the family and species levels) were significantly correlated with size and larval morphology. Correlations were found between swimming performance and propulsive area, fineness ratio and aspect ratio, and these morphological parameters may prove useful for predicting swimming ability in other taxa. Overall, the swimming speeds of larvae from the same families at the two locations were relatively similar, although the Lutjanidae and Acanthuridae from the Caribbean were significantly slower than those from the great barrier reef. Differences in swimming speed and body form among late stage larvae suggests that they will respond differently to factors influencing survival and transport during their pelagic phase, as well as habitat use following settlement.  相似文献   

4.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

5.
Acoustic telemetry was used to track vertical and horizontal movement patterns and to monitor the stomach temperatures of seven juvenile shortfin mako sharks (Isurus oxyrinchus Rafinesque) in the Southern California Bight from July to November 2002. Makos (80–145 cm fork length, FL) were attracted to the tracking vessel, where they were fed a mackerel containing an acoustic transmitter that reported temperature and pressure. Tracks ranged from 6.8–45.4 h. Collectively, the mako sharks spent 80% of the track record at 0–12 m, 15% at 12–24 m, and 5% at depths >24 m. The average horizontal swimming speed was 2.3 km h–1 or 0.55 FLs s–1, and the greatest distance traveled was 145 km in 45.4 h. For the six tracks >21 h, there was a positive correlation between body size and maximum depth. Makos used more of the water column during daylight hours. Mean stomach temperature was 3.8±1.5°C above ambient, and body size was positively correlated with both maximum and average stomach temperature. Stomach content analyses of four makos captured at the end of tracking verified the occurrence of feeding events as indicated by changes in stomach temperature.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

6.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

7.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

8.
The swimming behaviour of the Norway lobster, Nephrops norvegicus (L.), was studied in the laboratory. The lobsters were stimulated to swim repeatedly until they failed to respond to a single tactile stimulus. The position of the initiating stimulus on the body determined the height of the escape path above the bottom of the tank. A stimulus to the rostrum resulted in a low swimming trajectory, rarely exceeding a height of 0.1 m. A similar tactile stimulus to the abdomen produced higher mean swimming trajectories up to 0.5 m. Several parameters of swimming performance and endurance were measured for each swimming sequence, including distance, duration, mean and maximum velocities and the frequency and number of tail beats. Results showed no significant differences in the average swimming performance and endurance of males and females, but there was a sex difference in the relationship between swimming performance and N. norvegicus size.  相似文献   

9.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

10.
Oxygen consumption and tail beat frequency were measured on saithe (Pollachius virens) and whiting (Merlangius merlangus) during steady swimming. Oxygen consumption increased exponentially with swimming speed, and the relationship was described by a power function. The extrapolated standard metabolic rates (SMR) were similar for saithe and whiting, whereas the active metabolic rate (AMR) was twice as high for saithe. The higher AMR resulted in a higher scope for activity in accordance with the higher critical swimming speed (U crit) achieved by saithe. The optimum swimming speed (U opt) was 1.4 BL s−1 for saithe and 1.0 BL s−1 for whiting with a corresponding cost of transport (COT) of 0.14 and 0.15 J N−1 m−1. Tail beat frequency correlated strongly with swimming speed as well as with oxygen consumption. In contrast to swimming speed and oxygen consumption, measurement of tail beat frequency on individual free-ranging fish is relatively uncomplicated. Tail beat frequency may therefore serve as a predictor of swimming speed and oxygen consumption of saithe and whiting in the field.  相似文献   

11.
The marine dinoflagellate Cochlodinium polykrikoides is a harmful and highly motile algal species. To distinguish between the motility characteristics of solitary and chain-forming cells, the swimming trajectories and speeds of solitary cells and 2- to 8-cell chains of C. polykrikoides were measured using a digital holographic particle tracking velocimetry (PTV) technique. C. polykrikoides cells exhibited helical swimming trajectories similar to other dinoflagellate species. The swimming speed increased as the number of cells in the chain increased, from an average of 391 μm s−1 (solitary cells) to 856 μm s−1 (8-cell chain). The helix radius R and pitch P also increased as the number of cells in the chain increased. R increased from 9.24 μm (solitary cell) to 20.3 μm (8-cell chain) and P increased from 107 μm (solitary cell) to 164 μm (8-cell chain). The free thrust-generating motion of the transverse flagella and large drag reduction in the chain-forming cells seemed to increase the swimming speed compared to solitary cells. The measured swimming speeds agreed with those from field observations. The superior motility of chain-forming C. polykrikoides cells may be an important factor for its bloom, in addition to the factors reported previously.  相似文献   

12.
Information about foraging speeds is particularly valuable when the impact of a predator species upon a community of prey has to be defined, as in the case of great cormorants. We measured the swim speed of 12 (six males and six females) free-ranging great cormorants Phalacrocorax carbo, foraging off the Greenland coast during the summer of 2003, using miniaturized data-loggers. Although mean body mass of males was 27% greater than that of females, and mean swim speed of males were 29–57% higher than that of females during foraging phases (but not descent phases) of dives, these differences in speeds were not significant due to high variances. Birds descended to the mean maximum depth of 4.7 m at an average speed of 1.6±0.5 m s−1, a speed similar to that measured in captive cormorants in previous studies. Although bursts of up to 4 m s−1 were recorded, speed usually decreased during the deepest (foraging) phase of dives, being on average 0.8±0.6 m s−1. Speeds measured here should be taken with caution, because the large propeller loggers used to measure speed directly decreased descent speeds by up to 0.5 m s−1 when compared to smaller depth-only loggers. Cormorants in Greenland seem to combine two searching strategies, one requiring low speed to scan the water column or benthos, and one requiring high speed to pursue prey. These two strategies depend on the two main habitats of their prey: pelagic or demersal.  相似文献   

13.
The swimming behaviour of laboratory-reared newly hatched cod larvae (Gadus morhua L.) was observed in a control solution of artificial seawater and in seven solutions, each with a different concentration of arginine (109 to 10-3 M). The behaviour of 20 larvae was analysed in each of the eight solutions; the individual observation time was 1 min. Individual movements were recorded on video and analyzed using a computer-assisted program. The larvae swam in straight lines (a trajectory), rested, moved and started swimming again. For the parameters analyzed, i.e., number of movements, angle between successive trajectories and straightness index, there was no significant difference between the behaviour of the larvae in the different solutions. However, for the larvae in 10-5, 10-4 and 10-3 M arginine solutions, the analyzed parameters, i.e., time active, frequency of trajectories (number of movements exceeding body length), distance swum min-1, length of individual trajectories and trajectory velocity, were all significantly lower than for the larvae in the control solution of artificial seawater and for larvae in the solutions of 10-9, 10-8, 10-7 and 10-6 M arginine. The results show that the mean distance swum by cod larvae min-1 was two to five times longer in artificial seawater without arginine and in the four lower concentrations of arginine than in the three higher concentrations. Scanning micrographs show that newly hatched (pre-feeding) cod larvae possess olfactory organs. It seems reasonalbe to assume that the observed changes in swimming behaviour are mediated by the olfactory sense and are important in the feeding strategy of cod larvae. We suggest that the observed behaviour increases the probability of the larvae localizing patches of prey organisms and remaining in the patch once they have found it. The results show that chemokinesis is a mechanism by which the spatial distribution of fish larvae will be correlated with their prey.  相似文献   

14.
Resting metabolic rate (RMR), energy requirements and body core temperature were measured during underwater swimming in great cormorants (Phalacrocorax carbo sinensis) at the zoological garden in Neumünster, Germany, using gas respirometry and stomach temperature loggers. We used a 13 m long still water canal equipped with a respiration chamber at each end. Birds swam voluntarily in the canal at a mean speed of 1.51 ms-1. Power input during underwater swimming averaged 31.4 W kg-1. Minimal costs of transport of 19.1 J kg-1 m-1 were observed at a speed of 1.92 m s-1. Body core temperature was stable in all birds within the first 60 min spent in the canal. After that, body temperature dropped at a rate of 0.14°C min-1 until the birds voluntarily left the water. Our data indicate that great cormorants spend 2.7 times more energy than Adélie penguins (Pygoscelis adeliae) during underwater swimming. This can be essentially attributed to their poor insulation, their mode of locomotion underwater and differences in streamlining. RMR on land was related to body mass via VO2=0.691 M0.755 (where VO2 is O2-consumption in litre h-1 and M is body mass in kg). In order to quantify the effects of external devices on energy consumption during underwater swimming, we tested a dummy data logger attached to the back of the cormorants as well as a ring on the leg. The ring had no apparent influence on the swimming energetics of the cormorants. In birds equipped with dummy loggers, swimming speed was not significantly influenced, but both power input and costs of transport increased by a mean of 19% for swimming speeds between 1.4 and 1.8 m s-1.  相似文献   

15.
K. J. Larson 《Marine Biology》1992,112(2):229-235
Linuche unguiculata (Schwartz) seasonally forms patches in the Caribbean Sea and Indo-Pacific Ocean. Eighteen patches of medusae varying from about 500 m2 to nearly 1 km2 in area, were documented along the Belize barrier reef in March and April 1987, April 1988, and March and April 1990. The shape of each patch and the inter-medusa distances varied with wind velocity. At low wind speed (<4 m s-1) patches were elliptical or circular and the individual medusae were separated by distances of 0.5 m, whereas at higher speeds windrows were evident and medusae were closer together. Windrows probably form by horizontal advection owing to convergence by Langmuir circulations. Because individual patches might exist for up to 4 mo as they drift downwind, and because winds of sufficient speed to produce Langmuir circulations do not always occur, a mechanism is necessary to maintain patch integrity during calms. In situ observations and in vitro video recording showed that the medusae swam in horizontal, near-surface, circular, clockwise trajectories. Although swimming speed was relatively high (up to 8 cm s-1). net displacement velocity can be low (<1 cm s-1). Thus, circular swimming probably reduces cluster breakup. Patch formation probably improves reproductive success by reducing sperm dilution.  相似文献   

16.
The logarithm of stamina for each of Sardinops sagax (4 to 6 600 s), Scomber japonicus peruanus (16 to 27 000 s) and Odontestes regia (7 to 9 900 s), adjusted to a length of 10 cm, decreased linearly over swimming speeds of 31 to 82, 25 to 78 and 24 to 75 cm s-1, respectively (19°C). The regression coefficient was -0.064 for both S. j. peruanus and O. regia and -0.049 for S. sagax. Critical swimming speed (60 min, 5 cm s-1) for S. sagax (10cm), 32 cm s-1, is within the range found for other species of similar length. The suggestion of a change in regression coefficient as swimming speed increased from prolonged to burst (Brett, 1964) was not supported by the results of this study.  相似文献   

17.
 To determine how fertilisation varied with sperm concentration for two species of scallop, Chlamys (Equichlamys) bifrons (Lamarck) and C. asperrima (Lamarck), we performed a simple series of sperm dilution experiments, and measured egg size and sperm swimming speeds. C. bifrons eggs were much larger (average diam=116.5 μm), and sperm swimming speeds faster (209.8 μm s−1), than C. asperrima (71.2 μm, 166.0 μm s−1). In both species, maximum fertilisation occurred at an ambient sperm concentration of around 100 sperm μl−1; the maximum proportion of eggs fertilised was less than 0.70 in the C. bifrons experiments, but nearer 1.0 with C. asperrima. At high sperm concentrations (>100 sperm μl−1), fertilisation decreased (presumably due to polyspermy) with increasing sperm concentration, but decreased more rapidly in C. bifrons than C. asperrima. A polyspermy-adjusted fertilisation kinetics model could be fitted to the experimental data, but unique parameter estimates could not be determined. Received: 7 October 1999 / Accepted: 8 July 2000  相似文献   

18.
A. W. North 《Marine Biology》1996,126(1):125-132
The activity and behaviour of a free-living Antarctic fish,Notothenia coriiceps Richardson (formerlyN. neglecta), was investigated using a high-sensitivity, underwater TV camera at Signy Island, South Orkney Islands. Detailed observations of the 33 cm TL (total length) fish were made over a period of 6 d in austral summer (February 1992), for a total 69.5 h. Natural light at 2.5 m depth allowed viewing from 1 h before sunrise to 1 h after sunset. The fish stayed in a territory within 3 m of a small cave for >98% of the time, and made between 1 to 148 swims d-1, of which 92.5% were brief (<15 s) feeding attempts. On average, 1.7% of each day was engaged in locomotion, including 1.2% swimming and 0.5% manoeuvring. Swimming was generally slow, at <2 body lengths s-1, and labriform and subcarangiform modes were used alternately or in combination. Activity level (swims or displays per hour) was unaffected by tide, but was lower for 3 d when a wind speed >16 knots prevailed indicating that large waves reduced activity. A suspected diurnal activity rhythm was not statistically significant. The fish is an ambush-predator, and it took most of its prey from the water column but some off macroalgae or the seabed. Ventilation rate was slightly higher after activity, and peaked after an encounter with anotherN. coriiceps.  相似文献   

19.
The foraging ecology of seven Gentoo penguins,Pygoscelis papua, breeding at Ardley Island, Antarctica was studied using animal-attached devices which recorded swimming speed, heading and dive depth. Reconstruction of the foraging routes by vectorial analysis of the data indicated that at no time did the birds forage on the sea bed. Swimming speed was relatively constant at 1.7 m s-1, but rates of descent and ascent in the water column during dives increased with increasing maximum dive depth due to changes in descent and ascent angles. The amount of time spent discending and ascending in the water column increased with maximum dive depth as did the duration spent at the point of maximum depth. Dive profiles were essentially either U-shaped (flat-bottomed dives), or V-shaped (bounce dives). Development of a model based on simple probability theory indicated that the optimal dive profile to maximize the chances of prey acquisition depends on vertical prey distribution and on the visual capabilities of the birds with respect to descent and ascent angles.  相似文献   

20.
Sublethal effects of chromium trioxide on mosquito fish, Gambusia affinis, were carried out for 28 days on day 4, 8, 12, 16, 20, 24, and 28. The sublethal effects of chromium (LC10, 77.62?mg?L?1) on antioxidant enzymes, thiobarbituric acid reactive substance (TBARS), locomotor behavior, and gill morphology were studied. The antioxidant enzymes like superoxide dismutase (SOD) and catalase were induced throughout the exposure span of 28 days. Percent induction was also increase with the days of exposure. Lipid peroxidation product, malondialdehyde was enhanced in the viscera tissue of chromium-exposed fish. Perturbation of locomotor behavior like decrease in distance travelled (m?min?1) and in swimming speed (cm?s?1) was observed in exposed fish. Chromium toxicity caused alterations in gill morphology like hypertrophy and hyperplasia in secondary lamellae followed by detached epithelium with severe necrosis. It can be concluded from the results that Cr intoxication in Gambusia fish, caused induction in antioxidant enzymes and lipid peroxidation, plus changes in gill morphology and locomotor behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号