首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deposition velocities have been determined for corn and soybeans in the first 4–6 weeks of growth in a full-scale study of canopy flow in a wind tunnel. Particles of 1, 5, 10 and 15 μm aerodynamic diameter made of sodium florescein were injected into the Environmental Wind Tunnel Facility at Colorado State University. Deposition velocities were determined as a function of free stream velocity (183, 305 and 610 cm/s) and approach flow turbulence intensity (~1% and 8%). Plants were arranged in realistic field configurations. Hot-wire anemometer studies confirmed that the fluid velocity profiles developed in the wind tunnel were similar to the flow realized in canopies in natural fields. An increase in velocity and turbulence intensity was found to decrease the deposition velocities. A minimum deposition velocity was observed at a particle diameter of 5 μm.  相似文献   

2.
Residents of Xuan Wei County in China have unusually high lung cancer mortality that cannot be attributed to tobacco use or occupational exposure. They are exposed to smoke from unvented, open pit coal or wood fires (often used for cooking and heating). The variation in lung cancer rates among communes within the county suggests that indoor combustion of smoky coal may be the prime determinant of lung cancer. To characterize the air in Xuan Wei homes, samples of air particles and semivolatile organic compounds were collected from homes located in two communes; one commune has a high rate of lung cancer, and the other has a low rate. Samples collected in the commune where the lung cancer rate is high and where smoky coal is the predominant fuel contained high concentrations of small particles with high organic content; organic extracts of these samples were mutagenic. Samples from homes in the wood-burning commune, which has a low rate of lung cancer, consisted mostly of larger particles of lower organic content and mutagenicity. The smoky coal sample was a mouse skin carcinogen and was a more potent initiator of skin tumors in comparison to the wood or smokeless coal sample.  相似文献   

3.
Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles.  相似文献   

4.
Properties,use and health effects of depleted uranium (DU): a general overview   总被引:30,自引:0,他引:30  
Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international military conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. This led to renewed efforts to assess the environmental consequences and the health impact of the use of DU. The radiological and chemical properties of DU can be compared to those of natural uranium, which is ubiquitously present in soil at a typical concentration of 3 mg/kg. Natural uranium has the same chemotoxicity, but its radiotoxicity is 60% higher. Due to the low specific radioactivity and the dominance of alpha-radiation no acute risk is attributed to external exposure to DU. The major risk is DU dust, generated when DU ammunition hits hard targets. Depending on aerosol speciation, inhalation may lead to a protracted exposure of the lung and other organs. After deposition on the ground, resuspension can take place if the DU containing particle size is sufficiently small. However, transfer to drinking water or locally produced food has little potential to lead to significant exposures to DU. Since poor solubility of uranium compounds and lack of information on speciation precludes the use of radioecological models for exposure assessment, biomonitoring has to be used for assessing exposed persons. Urine, feces, hair and nails record recent exposures to DU. With the exception of crews of military vehicles having been hit by DU penetrators, no body burdens above the range of values for natural uranium have been found. Therefore, observable health effects are not expected and residual cancer risk estimates have to be based on theoretical considerations. They appear to be very minor for all post-conflict situations, i.e. a fraction of those expected from natural radiation.  相似文献   

5.
为评估由我国大气中α HCH所导致的人体健康风险,利用CanMETOP 模拟的2005年日均α HCH大气浓度,基于吸入因子和致癌风险进行研究。结果表明年吸入因子呈东部>西部,北部>南部的特征,东中和东北部地区的吸入因子分别主要由人口密度和α HCH大气浓度贡献,东中和东南部地区的个体健康损失小于东北地区,东中和东南部地区年内逐月吸入因子分配较为均匀,而东北地区主要集中的夏季,东北地区个体致癌风险系数明显高于中部和南部。推测由其它污染物所形成的暴露风险具有类似的时空分布。加之夏季东北地区集中降水所形成的湿沉降以及气温升高等因素,使摄食暴露和皮肤接触暴露增大,东北地区人群的复合暴露风险将显著大于其它地区  相似文献   

6.
The residence time of particulate contamination on the human body is a factor that has an important impact on the accuracy of exposure assessment in the aftermath of an accidental release of radionuclides to the atmosphere. Measurements of particle clearance from human skin were made using an illumination system to excite fluorescence in labelled silica particles and a CCD camera and image processing system to detect this fluorescence. The illumination system consists of high-intensity light emitting diodes (LEDS) of suitable wavelengths arranged on a portable stand. The physically small size of the LEDs allows them to be positioned close to the fluorescing surface, thus maximising the fluorescent signal that can be obtained. The limit of detection was found to be 50 microg of tracer particle per cm2. Experiments were carried out to determine the clearance rates of 10 microm and 3 microm particles from the skin. Results show that, in the absence of any mechanical rubbing of the skin, the clearance of particles from the skin followed an approximately exponential decay with a half-time of 1.5-7.8 h. Skin hairiness and degree of human movement were found, in addition to particle size, to have an important influence on particle fall-off rate.  相似文献   

7.
To estimate the human health risk of inhaled diesel particles, it is necessary to know their deposition and retention in the respiratory tract and the rate of dissociation of mutagenic compounds associated with the particles. The deposition of a chain aggregate aerosol of 67Ga2O3 with size and shape characteristics similar to diesel exhaust particles has been evaluated using Beagle dogs. Approximately one-third of the inhaled activity is deposited in the respiratory tract with most of the particles deposited in the lung. The mutagenic activity present in dichloromethane, dog serum, dog lung lavage fluid, saline, dipalmitoyl lecithin (DPL) and albumin following incubation of these fluids with diesel exhaust particles was determined in the Ames Salmonella system. As observed by other investigators, large quantities of mutagenic activity were removed by dichloromethane. A very small amount of mutagenic activity was removed by the serum and lavage fluid over a 3-day incubation period. No activity was detected following elution with the other solvents. The finding that minimal mutagenic activity could be demonstrated in the biological media following incubation with diesel exhaust particles may be due to a lack of removal of mutagens from the particles or an inactivation of removed mutagens by protein binding or other processes.  相似文献   

8.
Since the deposition of particulate in the respiratory system is strongly influenced by particle size, a correct assessment of this parameter is important for any inhalation experiment studying the potential health effects of air pollutants. Measuring the distribution of particles according to their aerodynamic diameter and mechanical mobility diameter is crucial in analyzing the deposition of submicron particles in the lower respiratory system. Cascade impactor measurements of diluted diesel exhaust in 12.6 m3 animal exposure chambers in the GMR Biomedical Science Department showed that the mass median aerodynamic diameter of the aerosol was 0.2 μm with 88% of the mass in particles smaller than 1 μm. Diffusion battery measurements showed that the mass median mechanical mobility diameter was about 0.11 μm. Transmission electron micrographs of particles deposited on chamber surfaces revealed both agglomerates and nearly spherical particles. The particles in these chambers are similar in size and shape to diesel particles described elsewhere. The flux of diesel particles to food surfaces was measured. Calculations of the expected daily dose by inhalation and by feeding showed that the “worst case” dose by feeding was only about one-tenth the dose by breathing.  相似文献   

9.
分阶段(1963~1986,1986~2002)分析了太湖各湖区沉积速率空间分布,发现各湖区沉积速率均有不同程度的增加,以东太湖最为显著,从29 mm/a增加至124 mm/a。同一沉积速率对不同水深的湖泊有不同的意义,因此为了对太湖各湖区淤积程度进行健康评价,提出相对沉积速率的概念,即沉积速率与湖泊平均水深的比值,并将其作为评价湖泊淤积程度健康与否的指标。健康评价标准根据国内主要湖泊的相对沉积速率确定,即最大相对沉积速率健康得分为0,相对沉积速率为0,健康得分为100,归一化求得太湖各湖区淤积程度健康得分。结果表明,贡湖、湖心区处于健康状态,东太湖为不健康,其他湖区为亚健康,全湖有从亚健康向不健康发展的趋势。〖  相似文献   

10.
The significant processes controlling the fate of particulates are convection an dispersion on one hand, and sedimentation on the other hand. Due to inteparticulated reactions, larger aggregates can be formed from smaller units thus changing the sedimentation characteristics. These phenomena are summarized in a mathematical model whereby hydrodynamic effects as well as the control mechanisms of the dissolved phase are included. A relationship was derived on the basis of energy considerations leading to the formulation of a critical sedimentation velocity of the suspensa, which determines the transport capacity of the flowing system. The sedimentation term is calculated from the above discussed transport capacity, hydro-dynamic parameters and suspending media properties. Aggregation effects are taken into account as an increase of sedimentation velocities of the particles. The equations are solved in a particular computational routine such that the horizontal distribution of suspended solids in a natural system can be describe as function of the above discussed phenomena. The model was tested with in situ-measurements. It was found that the observed processes are described satisfactorily by this model.  相似文献   

11.
Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10 μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution.  相似文献   

12.
An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and plant chemistry, O(3)-sensitive plant species, forest insects, and genetic changes in the Retezat and Tatra Mountains. Results of these investigations are presented in a GIS format to allow for a better understanding of the changes and the recommendations for effective management in these two areas.  相似文献   

13.
Deposition rates and deposition velocities of water-soluble ions (F, Cl, NO3, SO4, NH4, Ca, Mg, Na and K) were measured at a rural site (Gopalpura, Agra). Dry deposition samples were collected throughout the year from December 1995 to August 1997, while the aerosol samples were collected only during the winter season of 1996. Surrogate technique was used to collect the dry deposition samples, while aerosol samples were collected on PTFE membrane filter. Deposition velocities (Vd) of SO4 and NO3 are < or = 0.01 m s(-1) while Ca, Mg, Na, K, NH4, F and Cl exhibit greater than 0.01 m s(-1) Equivalent concentration ratios of K/Na, Ca/Na and Mg/Na conform with the corresponding ratios of local soil, indicating the dominant contribution of local sources. Deposition rates are maximum in winter, followed by summer and monsoon. No significant differences are found in dry deposition rates of all ions or in atmospheric concentrations of soil-derived elements with respect to wind direction. However, in aerosols, concentrations of F, Cl, NO3 and SO4 are higher with winds from southwesterly and westerly directions corresponding to pollution sources located in these directions. Deposition data have been used to calculate the critical load of S and N for soil with respect to Triticum vulgaris. The critical load of actual acidity was found to be 622.4 eq ha(-1) year(-1) within the range of 500-1,000 eq ha(-1) year(-1) as assessed by the RAINS-Asia model for this region. The present load of S and N (77.4 and 86.4 eq ha(-1) year(-1)) was much lower than the critical load of S and N (622.4 and 2,000 eq ha(-1) year(-1)), indicating that at present there is no harmful effect on ecosystem structure and function.  相似文献   

14.
2002年4月至2003年4月,通过对崇明东滩南部、中部和北部的标志桩观测以及实地观测分析,发现崇明东滩在一年中不同季节冲淤变化过程存在很大差异:春季到夏季,南部以冲刷为主,中部和北部以淤积为主;夏季到秋季,南部和中部以淤积为主,北部表现为冲刷;秋季到冬季,南部、中部和北部都以冲刷为主;头一年冬季到次年春季,南部和北部以淤积为主,中部则表现为冲刷。在同一观测路线上,不同季节高、中、低潮滩冲淤也存在一定差异。通过对沉积物粒度、水体含沙量等指标的测试,并借助潮差等资料,探究了影响潮滩季节性沉积的因素,发现潮滩季节性沉积与潮滩基础地貌、水体含沙量、水动力、潮流等有密切关系;但在不同部位不同季节,各因素对潮滩冲淤影响程度各不相同。  相似文献   

15.
Particulate matter (PM) is a key indicator of air pollution brought into the air by a variety of natural and human activities. As it can be suspended over long time and travel over long distances in the atmosphere, it can cause a wide range of diseases that lead to a significant reduction of human life. The size of particles has been directly linked to their potential for causing health problems. Small particles of concern include “inhalable coarse particles” with a diameter of 2.5 to 10 μm and “fine particles” smaller than 2.5 μm in diameter. As the source–effect relationship of PM remains unclear, it is not easy to define such effects from individual sources such as long-range transport of pollution. Because of the potent role of PM and its associated pollutants, detailed knowledge of their human health impacts is of primary importance. This paper summarizes the basic evidence on the health effects of particulate matter. An in-depth analysis is provided to address the implications for policy-makers so that more stringent strategies can be implemented to reduce air pollution and its health effects.  相似文献   

16.
Electron paramagnetic resonance (EPR) spectrometry has been used to study diesel particulate matter. The EPR signals for a graphitized carbon black and particles collected from two different diesel engines have been compared. Variations in the line widths and signal intensities due to various chemical and physical pretreatments of the particles were observed. The EPR signals for the diesel particulates were shown to be sensitive to oxygen, nitric oxide, nitrogen dioxide, and ultraviolet and visible radiation. These results suggest that EPR may be a convenient means for characterizing particles from different sources or for demonstrating particle reactivities. The demonstrated photochemical reactivities of the airborne particles have significant environmental health implications.  相似文献   

17.
Cadmium and lead have been identified as very toxic metals, which are widely present in the environment due to natural and anthropogenic emissions. Many studies have shown that the food chain is the main pathway of cadmium and lead transfer from the environment to humans. It is well documented that many factors will affect their transfer through food chains. Previous investigations on heavy metals were mostly concentrated on one contaminant in isolation. However, in real environments, exposure to mixtures of metals is ubiquitous such that cadmium pollution is invariably being associated with lead and zinc, etc. This study focuses on the contamination and health effects of the metal mixtures. For this purpose, a dietary survey was taken for 3 groups in Nanning in October 2002. Samples of soils, plants (vegetables), urine and blood of humans were measured for Cd, Fe, Cu, Zn, Ca and Pb, in addition, the urinary indicators of renal dysfunction Albumin (ALB), N-acetyl-beta-D-glucosaminidase (NAG), Beta-2-microglobulin (beta2-MG) and Retinol-binding protein (RBP) in urine were also measured. Results showed that soil contamination with metal mixtures had caused significant renal dysfunction of the local residents living in the contaminated area, and the dose-response curve was somewhat altered by the mixed contamination of Cd and Pb as well as the intake of other minerals. The importance of mixtures of metal contamination and human health are also discussed in this paper.  相似文献   

18.
The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM2.5, with total or cause‐specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM10 and PM2.5–10 an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM10 or PM2.5–10. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM10 and PM2.5–10, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust.  相似文献   

19.
Bushfire fighting is a hazardous occupation and control strategies are generally in place to minimize the hazards. However, little is known regarding firefighters' exposure to bushfire smoke, which is a complex mixture of toxic gases and particles. In Australia, during the prescribed burning season, firefighters are likely to be exposed on a regular basis to bushfire smoke, but whether these exposures affect health has yet to be determined. There are a number of factors that govern whether exposure to smoke will result in short-term and/or long-term health problems, including the concentrations of air pollutants within the breathing zone of the firefighter, the exposure duration, and health susceptibility of the individual, especially for pre-existing lung or heart disease. This paper presents measurements of firefighters' personal exposure to bushfire smoke, the first step within a risk management framework. It provides crucial information on the magnitude, extent and frequency of personal exposure to bushfire smoke for a range of typical scenarios. It is found that the primary air toxics of concern are carbon monoxide (CO), respirable particles and formaldehyde. Also, work activity is a major factor influencing exposure with exposure standards (both average and short-term limits) likely to be exceeded for activities such as suppression of spot fires, holding the fireline, and patrolling at the edge of a burn area in the urban-rural interface.  相似文献   

20.
To improve long-term radioecological impact assessment for the contaminated ecosystem of Bylot Sound, Greenland, U and Pu containing particles have been characterized with respect to particle size, elemental distribution, morphology and oxidation states. Based on scanning electron microscopy with XRMA, particles ranging from about 20 to 40 microm were isolated. XRMA and mu-XRF mapping demonstrated that U and Pu were homogeneously distributed throughout the particles, indicating that U and Pu have been fused. Furthermore, mu-XANES showed that U and Pu in the particles were present as mixed oxides. U was found to be in oxidation state IV whereas Pu apparently is a mixture of Pu(III) and Pu(IV). As previous assessments are based on PuO2 only, revisions should be made, taking Pu(III) into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号