首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>高性能飞行器朝着速度更快、航时更长、稳定性更高的方向发展,一方面要求其发动机推重比和效率不断提升,另一方面要求其热防护系统耐温性和服役可靠性不断增加。随着发动机推力和效率的提高,发动机的涡轮进口温度需不断提高。未来的航空发动机要求其热端关键部件在1400℃以上的高温和复杂载荷条件下长期可靠使用,因此传统的镍基和钴基高温合金已经不能满足下一代高性能先进发动机的需求。航天发  相似文献   

2.
目的满足临近空间飞行器对结构/热防护系统质量指标的苛刻要求,研制兼具轻量化与高效防隔热/承载一体化的热防护结构及系统。方法根据临近空间飞行器承力和防热两方面的要求,设计一种全复合材料防隔热/承载一体化热防护结构,采用地面高温环境试验,考查复合材料一体化热防护结构的抗烧蚀性能。建立一体化热防护结构的热响应和力学响应预报方法,以某飞行器机翼为研究对象,开展一体化热防护结构在机翼部位的应用研究,利用有限元方法进行热力耦合分析。结果一体化热防护结构高温热暴露后表面出现热解,但结构性能保持良好。结论设计的一体化热防护结构满足防热和承载两方面设计要求,是新一代飞行器的理想热防护方案。  相似文献   

3.
目的研究高温-真空环境对新型X2101双马树脂基复合材料结构及性能的影响。方法采用管式炉分别在330,350,370,400℃等高温/真空耦合条件下对X2101双马树脂基复合材料层合板进行热老化处理,利用称重法、傅里叶红外光谱仪(FTIR)、万能试验机和动态热机械分析仪(DMA)等测试手段表征分析老化条件对复合材料的质损率、化学结构、力学性能、动态力学行为的影响。结果复合材料的最高质损率低于4%。在350℃以下,热老化对基体树脂化学结构的影响较小,随着老化温度的升高,储能模量呈现出先增大后减小的趋势;350℃热老化10 h后复合材料的力学性能保持率在65%以上。结论 X2101双马树脂基复合材料是一种性能优良的耐高温结构材料,可用于制造在300℃高温下服役的航空航天结构件。  相似文献   

4.
<正>发动机涡轮前燃气温度对航空发动机的推重比(或功重比)有着至关重要的影响。研究表明,在发动机其他参数不变的条件下,涡轮前燃气温度每提高50℃,发动机的推力可增加7%~8%。在推重比8以前的发动机涡轮前燃气温度为1440 K左右,而推重比8发动机的涡轮前燃气温度为1670 K,推重比10的发动机,其涡轮前燃气温度达到了1850 K左右,推重比12发动机的涡轮前燃气温度预计将达到2000K。更高推重比的航空发动机将要求更高  相似文献   

5.
环境升温过程对常温固化环氧树脂热力学性能的影响   总被引:2,自引:0,他引:2  
目的提高常温固化环氧树脂体系的高温使用性能。方法采用常温固化剂T31、中温固化剂IPDA以及高温固化剂DDM作为混合固化剂,对E-44型和AG-80型混合环氧树脂体系进行常温固化反应,并分析环境升温过程对固化物热力学性能的影响。通过DMA分析、热变形测量、固化度测试,分别评价室温固化环氧树脂在环境升温过程前后的玻璃化转变温度、热变形量及体系内部的固化反应程度变化,并通过吸水率测试和弯曲强度测试对玻璃纤维布增强常温固化环氧树脂基复合材料的耐湿热性能以及高温条件下的力学性能进行分析。结果环氧树脂常温固化物的tg为85.21℃,经1.5℃/min的平均升温速率加热至90℃之后,该环境升温过程使固化物的固化度增大至92%以上,tg增长为132.06℃的同时热变形温度增大。其复合材料耐湿热性能提高,且100℃时弯曲强度的保持率为65%,对于加热至120℃的环境升温过程,固化物的固化度接近96%,tg增长为144.45℃的同时热变形温度进一步提高,其复合材料耐湿热性能改善程度更加明显,且130℃时弯曲强度保持率仍接近60%。结论常温、中温、高温混合固化剂的合理复配有助于环氧树脂体系在环境升温变化的诱导条件下发生梯度式固化反应,使体系内部的交联固化程度迅速升至较高水平,可以有效提高其玻璃化转变温度,显著改善常温固化环氧树脂体系在高温条件下的热力学性能。  相似文献   

6.
利用超声速矩形湍流导管和等离子电弧加热器模拟了发动机燃烧室内流和高超声速飞行器外壁面外流热环境,进行了平板表面冷壁热流测量和燃烧室内壁材料考核试验。结果表明:由于辐射换热的影响,在选取的两个典型来流条件下,发动机燃烧室内流热环境下的冷壁热流比外流热环境下的高出21%和40%,但是冷壁热流的增量基本相当,约为0.70~0.80MW/m2。随着冷壁热流的增加,辐射换热产生的热流增量的影响力会逐渐减小。材料考核时,相同配方的C/SiC复合材料在内流热环境下的表面温度高出约400℃,背面温度高出约90℃,这种差异对于发动机燃烧室内壁面材料考核至关重要,必须在材料考核试验中加以考虑。   相似文献   

7.
目的 实现高性能树脂基复合材料的环境适应性评价和使用寿命预测。方法 选取玻璃纤维增强不饱和聚酯(GF/197S)与玻璃纤维增强乙烯基脂(GF/905-2)2种树脂基轻质复合材料,开展模拟海洋环境实验室盐雾、湿热和盐水浸泡环境9 600 h的加速老化试验。基于4种力学性能(拉伸强度、弯曲强度、压缩强度及层间剪切强度)开展材料老化行为规律研究,利用傅里叶变换衰减全反射红外光谱(ATR-FTIR)对树脂基体在3种加速老化环境中的分子链段与官能团变化情况进行分析,得到基体树脂的老化机理。利用外观、超声扫描成像、SEM分析树脂纤维界面的变化情况,明确树脂/纤维界面的失效模式。利用差示扫描量热分析(DSC)与热重分析(TG)分析3种加速老化方式对玻璃纤维增强树脂复合材料(GFRPC)的玻璃化转变温度(tg)与热质量损失的影响。结果 3种老化方式对树脂基体的老化影响顺序依次为70 ℃/95%RH湿热、35 ℃盐雾、常温盐水浸泡。结论 得到了先进轻质树脂基复合材料的模拟海洋环境老化行为、失效模式以及树脂基体的老化机理,为实现高性能树脂基复合材料的环境适应性评价和使用寿命预测奠定了基础。  相似文献   

8.
C/C复合材料是一种碳纤维增强的新型复合材料,作为抗烧蚀材料而广泛地应用于飞行器的热防护领域。在热化学烧蚀作用下,C/C复合材料通过质量损失,带走大量的热,从而阻止高温对飞行器内部结构部件的损害,保证工作人员和仪器的安全。C/C复合材料的热化学烧蚀是一个典型的非线性、不连续问题。不同于传统偏微分方程在不连续边界上的奇异性,近场动力学(PD)理论采用积分-微分方程避开了这一问题,可以在不引入其他复杂判定条件的情况下,用于描述烧蚀界面的移动问题。通过对热化学烧蚀作用下C/C复合材料质量的损失和结构边界移动过程的近场动力学数值模拟,分析了热化学烧蚀与温度场耦合作用下C/C复合材料烧蚀性能的变化规律。  相似文献   

9.
目的分析陶瓷基复合材料的结构强度。方法围绕C/SiC陶瓷基复合材料连接结构失效分析问题,提出模量突降和渐进损伤两种分析方法,基于Abaqus软件平台编写UMAT有限元分析子程序,结合试验数据分析多种不同失效准则在陶瓷基复合材料结构强度分析中的适用性。结果基于改进三维Hashin失效准则,针对典型C/SiC复合材料连接结构进行了失效行为计算,获得结构的失效模式与试验结果规律一致,破坏载荷的预测误差在10%以内。结论通过与试验结果的对比分析,验证了两种方法的有效性,研究方法能够为高超声速飞行器、天地往返飞行器复合材料热结构的强度分析提供技术支撑。  相似文献   

10.
目的 探索一种航空发动机燃油系统附件低温试验方法.方法 梳理对比国内外航空发动机燃油系统附件低温试验方法的差异,分析国内外标准规定的试验温度差异的来源,检测3号喷气燃料的实际低温特性,验证?51℃的试验温度对3号喷气燃料的不适用性.分析航空发动机系统附件低温工作时会升温的特点,提出尽量模拟起动过程的低温试验方法.结果 利用提出的试验方法,在环境温度为?55℃、燃油温度为?40℃下,进行了135 h低温试验,额外单独进行1000次模拟发动机低温起动过程.试验过程中,某型主燃油泵调节器工作正常,并随某航空发动机通过了某飞机在我国北方某机场的高寒试飞试验.结论 GJB 241A规定的燃油温度?51℃或黏度12 mm2/s对应的温度(?56℃)不适用于3号喷气燃料,环境温度为?55℃,燃油温度为?40℃,并尽量模拟发动机低温起动过程的低温试验方法能够有效验证航空发动机燃油系统附件的低温工作能力.  相似文献   

11.
目的 针对温度补偿垫块和碟形垫片2种防松形式的复合材料与高温合金螺栓连接结构,进行高温振动环境下的防松试验研究。方法 推导连接结构预紧力与固有频率的关系,表明固有频率的变化可作为连接结构是否松动的判据。研究常温环境下螺栓预紧力对复合材料连接结构固有频率的影响,以及在常温、高温振动环境下温度补偿垫块和碟形垫片2种防松形式的热防松效果。结果 在常温振动环境下,2种防松形式的防松效果接近,在高温振动环境下,温度补偿垫块方案的防松效果优于碟形垫片方案。结论 复合材料与高温合金螺栓2种材料的热膨胀系数不一致引起的热适配问题是导致的螺栓松动的主要原因。  相似文献   

12.
近年来,纳米零价铁(nZVI)因具有比表面积大、还原能力强、成本低的特点被用于去除环境中的六价铬〔Cr(Ⅵ)〕,然而由于高表面能、固有磁力等因素的影响,nZVI具有易团聚、易氧化和不稳定的缺点,限制了其广泛应用. 鉴于此,本文以碳材料作为支持材料改性nZVI,比较了制备碳基nZVI复合材料的方法,分析了不同碳基nZVI复合材料去除Cr(Ⅵ)的反应效能,阐述了影响复合材料去除Cr(Ⅵ)的因素. 结果表明:①湿化学法合成的复合材料有利于提高nZVI的分散性,减少团聚. 热转化法合成的复合材料有利于节约成本,提高碳材料和nZVI的结合性. ②不同碳材料负载nZVI能有效提高nZVI的分散性、稳定性和抗氧化性. ③碳基材料负载nZVI能有效降低环境因素对nZVI的负面影响. ④碳基nZVI复合材料能提高对Cr(Ⅵ)的去除能力,其对Cr(Ⅵ)的最大吸附容量比nZVI高1.2~20倍. 本文旨在深入了解碳基nZVI复合材料的合成方法,提高碳基nZVI复合材料的性能,以期为开发高效稳定的碳基nZVI复合材料修复环境中的Cr(Ⅵ)提供一些启示.   相似文献   

13.
目的 提高航空发动机燃气涡轮工作叶片的结构完整性、安全性和可靠性。方法 以某型涡轴发动机燃气涡轮转子叶片热腐蚀案例为研究对象,详细阐述热腐蚀下燃气涡轮转子叶片的结构破坏形式,分析发生热腐蚀部位的分布规律。通过冶金分析方法,研究燃气涡轮转子叶片的热腐蚀-疲劳失效形式。结果 燃气涡轮叶片高摩擦系数的区域在高温燃气的冲刷效应以及热盐腐蚀的作用下,发生表面涂层腐蚀剥落。涂层腐蚀剥落部分的叶片合金基体受到高温燃气的氧化与侵蚀后,形成了热腐蚀坑。腐蚀坑表面的凹凸处出现应力集中,并萌生裂纹,最终引起叶片疲劳断裂。结论 探究了典型腐蚀性物质对燃气涡轮转子叶片的耐高温涂层与镍基合金基体侵蚀与氧化的化学本质,最后针对燃气涡轮转子叶片热腐蚀问题提出了改进建议,可对防范航空涡轴发动机热腐蚀问题提供有益参考。  相似文献   

14.
一、概论进气门是活塞式发动机上的主要零件之一,它是长期处于高温和化学作用(燃料燃烧产物)下进行工作的,它要求耐高热和化学耐腐蚀的材料,其所受最高温度可达600~700℃,同时气门要承受机械冲击的负荷和接触磨损,故进一步要求材料具有热强度。因为气门并不经常处于高温之下,而是忽热忽冷的交变温度,因此在设计上应该考虑  相似文献   

15.
双酚A(BPA)作为最常用的工业化合物之一,在环境中具有持久性,对人类健康及其他微生物造成威胁,因此,开发双酚A高性能去除剂并了解其作用机制具有重要意义。基于此,采用KOH活化策略制备了松木基多孔碳(PC),利用NaBH4对PC进行表面重构获得性能增强的松木基多孔碳(PC-1)。随后,采用单因素的实验方法考察了在多孔碳/过硫酸盐系统中松木基多孔碳去除BPA的能力及机制。结果表明,与PC相比,PC-1表面的羟基增加,羰基减少,ID1/IG从1.55增至1.60。与PC/PDS系统相比,PC-1/PDS系统在反应温度为25、35及45℃时对BPA的降解效率分别提高了45%、18%和64%。淬火及电化学实验说明PC及PC-1分别通过自由基及非自由基途径去除BPA。因此,碳的内在缺陷是过硫酸盐活化的活性位点,而含氧官能团则是影响活化途径的关键因素。  相似文献   

16.
随着高端武器装备和装备无人化的发展,装备产品迫切需要发展健康管理技术(PHM),受限于装备产品的全寿命周期试验数据、服役过程检测方法与维护标准,各类产品的PHM技术推动进展不一。PHM技术大致可以划分为三类,即基于模型、知识和数据的评估、分析、预测方法。方法学方面神经网络评估方法优势明显,并呈现网络化、智能化的信息融合趋势。树脂基复合材料在航空上的应用环境一般为350℃以下,主要部件包括机身、垂尾、平尾、前舱、尾翼,升降舵、方向舵、襟副翼,航空发动机的前缘、口盖、整流罩、扰流板等,从征集的论文情况看,航空复合材料在飞机上的应用占比持续增加。本专题聚焦树脂基复合材料结构件应用服役过程的结构损伤和失效判  相似文献   

17.
目的研究高温环境对树脂基复合材料螺栓连接接头的强度和破坏模式的影响规律。方法以T300/BMP316复合材料为研究对象,在室温~310℃范围内对不同宽孔比的螺栓连接接头开展拉伸试验研究。结果获得了不同宽孔比、不同温度环境下树脂基复合材料螺栓连接接头强度和破坏模式的变化规律。结论不同宽孔比螺栓接头试件的载荷-位移曲线既具有共性特征,又具有明显的差异。宽孔比对复合材料螺栓接头的拉伸强度和破坏模式均具有明显的影响,在相同温度下,接头的拉伸强度随着宽孔比的增大而下降,其破坏模式将由拉伸-挤压破坏逐步向剪切-挤压破坏转变,宽孔比越大,拉伸破坏模式占的比重越小,而剪切破坏占的比重越大。试验温度虽然没有改变同一宽孔比复合材料螺栓接头的破坏模式,但对其拉伸强度影响明显,相同宽孔比下复合材料螺栓接头静载强度随着温度的升高而降低,这是由于随着温度的升高,树脂基体的性能下降明显,使得接头中更易出现拉伸破坏和挤压破坏等,进而大大降低了复合材料螺栓接头的强度。  相似文献   

18.
目的为了得到石墨在高温环境下的杨氏模量,为飞行器热防护系统和高温热结构的设计提供可靠的技术保障。方法基于数字图像相关(DIC)方法和通电电阻加热技术,建立一套测量材料在高温环境下力学性能的测试系统。利用该系统,测量高温下石墨试样的表面应变场和应力-应变曲线,计算相应温度下的杨氏模量。在1400℃实验环境下,采用基于DIC与高温引伸计的方法同时测量超高温陶瓷试件的拉伸应变数据,并进行比较验证。结果在1400℃实验环境下,采用基于DIC与高温引伸计方法测得超高温陶瓷的应变-时间曲线吻合良好,方差为1.3×10-7。1200~1900℃高温环境下,石墨的杨氏模量随温度的升高呈线性增长趋势。结论采用基于DIC方法准确有效,该方法可方便快速地实现对石墨材料在高温环境下杨氏模量的测量。另外,该方法也可应用于其他导电材料杨氏模量的测试。  相似文献   

19.
目的研究低密度碳/酚醛复合材料在不同地面加热实验测试响应的差异性,指导材料在实际应用环境下的高温响应分析。方法对低密度碳/酚醛复合材料开展了热流为400 kW/m~2的单侧石英灯辐射加热实验,利用热电偶测温系统测量试件在加热过程中不同位置的温度时间历程,并对试件的烧蚀形貌和微观结构进行观测。同时与热流为464k W/m~2的氧乙炔加热陶瓷板辐射加热实验结果进行对比分析,并且采用有限元方法对材料的传热传质多场耦合计算进行分析。结果对于石英灯辐射加热,在测量点升温到接近200℃时,温度响应拐点都依次出现。由于加热的辐射热源不同,在不同的辐射波段下,多孔材料吸收和发射的热量不同,短时间内氧乙炔加热陶瓷板辐射加热使材料内部升温速率比石英灯辐射加热实验的要快,但长时间加热时现象刚好相反。结论进行传热传质多场耦合计算材料高温响应时,合理确定材料宏观性能随温度的变化至关重要。  相似文献   

20.
目的 研究装备动力舱在热/自然交变环境下玻璃纤维增强SiO2气凝胶复合材料性能随模拟使役工况试验时间的退化规律,提升装备动力舱热/自然交变环境效应控制水平。方法 以玻璃纤维增强SiO2气凝胶复合材料为研究对象,以湿热、盐雾和高温试验为热/自然交变环境试验谱,以振动试验为加速因子,开展5个周期的实验室模拟使役工况加速试验,对比分析样件初始状态和每一个周期试验后的性能。结果 经模拟使役工况试验后,玻璃纤维增强SiO2气凝胶复合材料的颜色由白色逐渐变成黄色,SiO2气凝胶含量逐渐减少,纤维元素组成变化不明显,导热系数升高,隔热性能下降,且均在4周期模拟使役工况试验后出现明显变化。结论 玻璃纤维增强SiO2气凝胶复合材料经5个周期的模拟使役工况试验后,其常温导热系数仅为0.026 4 W/(m.K),热面温度为200 ℃时,冷面平均温度仅为68.5 ℃,热/自然交变温差为43.5 ℃,具有良好的环境适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号