首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We inventoried wetland impoundments in the Louisiana, USA, coastal zone from the late 1900s to 1985. Historically, impoundment of wetlands for reclamation resulted in direct wetland loss after levees (dikes) failed and the impounded area was permanently flooded, reverting not to wetland, but to open-water habitat. A current management approach is to surround wetlands by levees and water control structures, a practice termed semi-impoundment marsh management. The purpose of this semi-impoundment is to retard saltwater intrusion and reduce water level fluctuations in an attempt to reduce wetland loss, which is a serious problem in coastal Louisiana. In order to quantify the total impounded area, we used historic data and high-altitude infrared photography to map coastal impoundments. Our goal was to produce a documented inventory of wetlands intentionally impounded by levees in the coastal zone of Louisiana in order to provide a benchmark for further research. We inventoried 370,658 ha within the coastal zone that had been intentionally impounded before 1985. This area is equal to about 30% of the total wetland area in the coastal zone. Of that total area, approximately 12% (43,000 ha) is no longer impounded (i.e., failed impoundments; levees no longer exist or only remnants remain). Of the 328,000 ha still impounded, about 65% (214,000 ha) is developed (agriculture, aquaculture, urban and industrial development, and contained spoil). The remaining 35% (114,000 ha) of impoundments are in an undeveloped state (wetland or openwater habitat). In December 1985, approximately 50% (78,000 ha) of the undeveloped and failed impoundments were open-water habitat. This inventory will allow researchers to monitor future change in land-water ratios that occur within impounded wetlands and thus to assess the utility of coastal wetland management using impoundments.  相似文献   

2.
Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号