首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤重金属污染对蚯蚓(Opisthopora)影响的研究   总被引:24,自引:0,他引:24  
研究了重金属污染区蚯蚓的群落结构,污染指示种类,以及污染影响的毒理指标,结果表明:随着重金属程度的增加,蚯蚓种类减少,蚯蚓体内重金属元素富集量增加,蚯蚓毒理实验表明:Cd中毒后过氧化物同工酶活性增加,脂酶工同酶活性减弱,Pb中毒后蚯蚓过氧化物酶和胆酶同工酶活性均增加。  相似文献   

2.
蚯蚓对重金属污染土壤中铅的富集研究   总被引:8,自引:0,他引:8  
蚯蚓在陆地生态系统中具有十分重要的功能,利用蚯蚓处理重金属污染土壤是一种新型的绿色生物技术。实验通过测定重金属污染土壤中不同铅浓度梯度下蚯蚓在培养期内对铅富集量的研究,结果表明:蚯蚓对铅有较强的富集作用,且随铅浓度的增加,蚯蚓体内的富集量也增加;单住质量蚯蚓培养期内吸收铅量与铅浓度梯度表现出极显著性差异,说明蚯蚓可以作为检测重金属污染土壤中铅的重要生物指标,论证了在重金属污染土壤动物修复中引入蚯蚓的可行性。  相似文献   

3.
以芦苇、香蒲、美人蕉为供试植物,研究向人工湿地中加入蚯蚓后湿地植物叶绿素含量和抗氧化酶活性的变化,结果表明:(1)向人工湿地中加入蚯蚓后显著增加了湿地植物的叶绿素含量(P<0.05)。(2)蚯蚓加入人工湿地后,降低了湿地植物的MDA含量,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,且美人蕉的SOD活性,美人蕉和香蒲的POD活性以及香蒲的CAT活性显著下降(P<0.05)。(3)湿地植物的POD活性与SOD活性和MDA含量呈显著正相关。加入蚯蚓后,人工湿地对COD、TN和TP的去除率分别增加了11.1%、9.5%和6.5%,其原因与蚯蚓能增加人工湿地中植物的叶绿素含量,并降低植物的抗氧化酶活性有关。  相似文献   

4.
SO_2伤害小麦,绿豆,豇豆、四季豆、南瓜,丝瓜幼苗后,引起超氧化物歧化酶(SOD)和过氧化物酶(POD)同工酶谱出现新酶谱带,而且随着污染次数增加,此新同工酶谱带越明显,说明SOD同工酶的变化与SO_2伤害有一定关系,经分析新出现的酶谱带属Cu-Zn-SOD类型。  相似文献   

5.
华北代表性农田的蚯蚓群落与重金属污染指示研究   总被引:6,自引:1,他引:6       下载免费PDF全文
对鲁中地区农田环境有害化学物质对蚯蚓群体构成的影响进行了调查,并做了重金属毒理试验。普通农田的调查显示,棕壤农田有蚯蚓3科,6属,8种;褐土农田3科,5属,6种;潮土农田3科,6属,6种。调查、分析及毒理试验显示,潮土农田中暗灰异唇蚓、湖北远盲蚓、日本杜拉蚓3个种是适用于反应指示的重金属污染敏感种,赤子爱胜蚓、微小双胸蚓、威廉腔蚓3个种是适用于积累指示的重金属污染耐受性种。   相似文献   

6.
生物质炭改良剂在钝化污染土壤中重金属的同时,显著改善土壤物理、化学和生物性质。该文通过添加2%400℃下制备的玉米、水稻、小麦、大豆、豌豆等秸秆生物质炭到Cd和Pb染毒红壤中,研究蚯蚓(赤子爱胜蚓)暴露30 d后的体重损失率、死亡率和体内抗氧化酶活性等指标的影响。结果表明,施加生物质炭显著降低Cd、Pb染毒土壤中可交换态重金属含量。另外,蚯蚓体重损失率分别从改良前的37.16%和38.81%降低至改良后的(31.92%±2.54%)和(28.02%±1.46%),同时死亡率从46.67%分别降低至(40.00%±2.98%)和(32.00%±6.29%),但都未达显著水平(P>0.05)。相比于染毒土壤,施加生物质炭处理土壤中蚯蚓体内过氧化氢酶(CAT)、过氧化物酶(POD)活性和丙二醛(MDA)含量在Cd污染土壤中分别显著降低15.19%~44.89%、12.09%~56.57%、32.52%~59.13%;在Pb污染土壤中分别显著降低1.54%~20.70%、18.44%~48.94%、44.65%~58.46%。相关性分析结果表明,Cd和Pb污染土壤中蚯蚓的CAT、POD活...  相似文献   

7.
报道了久效磷对3种海洋微藻细胞内2种清除活性氧的关键性酶———超氧化物歧化酶和过氧化物酶活性的影响.结果显示:1在久效磷的胁迫下,扁藻和三角褐指藻细胞的超氧化物歧化酶(SOD)活性均表现出下降的总变化趋势,而叉鞭金藻细胞的SOD活性时而上升,时而下降,在整个胁迫过程中呈现出无规律性的变化.2随着久效磷胁迫时间的延长,3种微藻细胞的过氧化物酶活性均逐渐下降,表现出相同的变化规律性.这说明不同的藻种,久效磷对其细胞内酶活性的影响不尽相同.推测超氧化物歧化酶和过氧化物酶(POD)活性的降低是微藻细胞内过量产生活性氧,进而引起藻细胞膜脂过氧化伤害的主要原因之一.  相似文献   

8.
六价铬污染对小白菜产量、养分吸收及若干生理指标的影响   总被引:10,自引:0,他引:10  
重金属铬的污染严重抑制小白菜的生长,铬的控制指标一般是根据小白菜的减产程度而得以确立的.本文讨论了六价铬污染对小白菜叶片光合作用、营养元素含量,细胞膜透性、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性以及过氧化物酶(POD)活性的影响.这一工作旨在为客观地制定铬污染的控制标准提供基础和参证.  相似文献   

9.
速生树种竹柳对重金属胁迫的生理响应   总被引:6,自引:1,他引:6  
为探讨速生树种竹柳(Salix sp.)对重金属胁迫的生理响应及耐受机制,以竹柳三号和竹柳五号为试验材料,在重金属复合污染(镉、铜、锌)的水稻土条件下处理65 d后,研究了其叶片叶绿素(Chl)、类胡萝卜素(Car)、可溶性糖、脯氨酸、可溶性蛋白、丙二醛(MDA)含量及过氧化物酶(POD)和超氧化歧化酶(SOD)活性的响应变化.结果表明:重金属胁迫下,两种竹柳叶片的叶绿素、类胡萝卜素、可溶性糖、可溶性蛋白含量均显著(p0.05)降低,而脯氨酸含量、过氧化物酶、超氧化歧化酶活性均显著(p0.05)升高.重金属胁迫下,竹柳三号叶片的脯氨酸、可溶性蛋白含量和超氧化歧化酶活性均显著(p0.05)低于竹柳五号,而叶绿素b含量和过氧化物酶活性反之.对照土壤中,竹柳三号的可溶性糖、可溶性蛋白含量和过氧化物酶、超氧化歧化酶活性均显著低于竹柳五号,叶绿素含量反之.两种竹柳的叶绿素a/叶绿素b值、丙二醛含量无显著差异.综上所述,叶绿素、类胡萝卜素、可溶性糖和可溶性蛋白含量等可以作为竹柳耐重金属胁迫的评价指标.竹柳五号在重金属胁迫作用下可维持较高的可溶性糖、可溶性蛋白含量和过氧化物酶、超氧化歧化酶活性,因此,竹柳五号比竹柳三号对重金属胁迫有更强的耐性.  相似文献   

10.
邻苯二甲酸二乙酯(DEP)是一种常见的塑料添加剂,并因塑料制品大量广泛使用而进入土壤环境,但其对土壤动物的毒性及其机制并未完全阐明.本文以赤子爱胜蚓(Eisenia foetida)为研究对象,使其暴露于不同含量DEP的模拟污染土壤,以蚯蚓体内的抗氧化酶活性、ROS含量、GST活性、MDA含量和DNA损伤程度为评估参数,研究含DEP污染土壤对蚯蚓的毒性作用并分析其机制.结果表明,在DEP胁迫作用下,蚯蚓体内的抗氧化酶和谷胱甘肽-S-转移酶(GST)活性、活性氧自由基(ROS)均发生变化并导致基因损伤产生.在28d的实验周期内0.1~50 mg·kg-1DEP的胁迫下,ROS含量水平呈现增加状态,存在"剂量-效应"关系,并且过量的ROS引起脂质过氧化反应造成机体内MDA含量增加.在ROS和MDA共同作用下,蚯蚓体腔内的DNA受到损伤并且损伤程度与DEP含量存在"剂量-效应"关系.从实验结果可以看出,DEP可以对蚯蚓机体和DNA造成一定程度的损伤,表现出较强的生态毒理效应.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号