首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 890 毫秒
1.
为增强Cu(Ⅱ)/PMS(PMS为活化过硫酸盐)体系的氧化能力,加速Cu(Ⅰ)和Cu(Ⅱ)之间的循环转化,以MO(甲基橙)为目标污染物,研究了Cu(Ⅱ)/PMS/UV(UV为紫外线)体系氧化降解MO的效果和反应机理,以及UV在Cu(Ⅱ)/PMS体系中的作用.结果表明:反应20 min时,Cu(Ⅱ)/PMS体系中MO的降解率为41.13%,Cu(Ⅱ)/PMS/UV体系中MO的降解率达到100%;通过投加TBA(叔丁醇)和EA(乙醇)发现,在酸性条件下体系的主要氧化物种是SO4-·(硫酸根自由基)和少量的·OH(羟基自由基);MO的降解率随pH的增大而减小;提高紫外灯功率和PMS投加量均有利于MO的降解;最佳Cu(Ⅱ)投加量为10.0 μmol/L,超过Cu(Ⅱ)的最佳投量会抑制MO的降解;MO的降解过程符合假一级动力学;紫外可见光谱图分析结果表明,MO最终被降解为共轭二烯类物质.研究显示,在Cu(Ⅱ)/PMS/UV体系中,UV可以有效促进Cu(Ⅱ)向Cu(Ⅰ)的转化,从而显著增强Cu(Ⅱ)/PMS体系的氧化能力,有效降解水中污染物.   相似文献   

2.
为了提高ZnO对偶氮染料污染物的光催化降解效率,以AgCl和GO(氧化石墨烯)作为改性剂,通过水热法和化学沉积法制备了AgCl/ZnO/GO光催化材料,采用XRD、SEM、XPS、UV-Vis方法对材料的物相组成、微观形貌及光学特性进行表征;以MO(甲基橙)为目标污染物,探究其在可见光下的催化降解性能,考察AgCl含量、催化剂投加量、pH对其可见光催化活性的影响.结果表明:①AgCl的沉积和GO的负载增强了ZnO对可见光的响应能力,提高了光生电子-空穴产生、分离效率,同时增加了材料的分散性及其对MO的吸附率,因此AgCl/ZnO/GO光催化材料对MO有良好的可见光催化降解效率.②AgCl/ZnO/GO对MO的催化降解效率随着AgCl含量的增加而增加,随着催化剂投加量的增加呈先增后降的趋势,溶液pH对其降解效果有一定影响,但不显著.③当AgCl/ZnO(二者物质的量的比)为2:1、AgCl/ZnO/GO投加量为70 mg、pH为7、室温下经过可见光照射50 min后,AgCl/ZnO/GO对质量浓度为10 mg/L的MO的降解率可达98.93%;此外,该催化剂重复使用4次对MO仍具有88%的去除率,显示出良好的稳定性.因此,AgCl/ZnO/GO是一种高效、稳定的可见光光催化剂,在废水净化方面具有良好的应用前景.   相似文献   

3.
利用污泥基生物炭(SDBC)固定铁物质制备了一种污泥基非均相催化剂(Fe-SDBC),用于活化过硫酸盐(PS)以降解酸性橙G(OG).Fe-SDBC/PS体系显示出对OG优异的降解性能.评价了影响降解的因素(Fe-SDBC金属负载量、Fe-SDBC投加量、初始pH值和PS浓度).并通过X射线荧光光谱仪(XRF)、傅立叶变换红外分析仪(FT-IR)和拉曼光谱仪(Raman)对Fe-SDBC进行了表征.自由基清除剂实验表明,SO4·-和OH·自由基均在降解过程中生成,且活化PS历程主要发生在非均质催化剂表面.分析Fe-SDBC活化PS的潜在机理,表明不同形式的铁物质是PS分解的主要贡献者,Fe2+/Fe3+的转化循环提高了Fe-SDBC持久活化PS的效果.Fe-SDBC循环实验表明其对活化PS具有较好的可重用性,连续3次24h降解高浓度污染物仍能发挥作用.综上所述,Fe-SDBC作为一种污泥基非均相催化剂可以持久活化PS,从而实现OG的降解.  相似文献   

4.
采用Fe3O4活化过硫酸盐(PS)同步去除水中的NOR (诺氟沙星)和Pb (II).探讨了Fe3O4投加量、PS浓度、初始pH值和Pb (II)浓度对NOR降解的影响.结果表明,NOR的降解符合伪一级反应动力学,在温度为30℃、NOR初始浓度为5.0mg/L、Pb (II)浓度为1.0mg/L、Fe3O4投加量为2.0g/L、PS浓度为1.5mmol/L、初始pH值为7.0的条件下,反应120min后,NOR降解率达90.2%,Pb (II)去除率为99.5%.自由基淬灭实验证实,硫酸根自由基(SO4-·)是NOR降解的主要自由基.通过LC-MS分析结果推测了NOR可能的降解路径和中间产物.Fe3O4活化PS高级氧化工艺可作为一种同步去除有机污染物和重金属的工艺.  相似文献   

5.
随着新能源汽车的推广和普及,锂离子电池的装机量呈爆发式增长,随之而来的是大量锂电池的报废,亟待回收处理. 已有锂电池回收技术提取锂、镍、钴、锰等金属后仍残留有一定量过渡金属的末端废渣,若不加以处理处置直接丢弃到环境中会造成重金属的环境污染风险. 本研究提出一种以锂电池回收的末端废渣为原料,与三聚氰胺固体粉末混合后热解的方法,制备出具有核壳结构的高性能催化剂,用于催化过硫酸盐氧化剂氧化去除有机污染物,实现其高值化再利用. 结果表明:①新制备的催化剂具有明显的核壳结构,核为镍钴氮化物和锰氧化物,壳为厚度约5.7~13.1 nm的石墨化碳层. ②以单过硫酸盐(PMS)为氧化剂,对新制备催化剂(NCM1)的催化性能进行了测试,发现其可高效催化PMS降解苯甲酸、苯酚等一系列难降解有机污染物,当NCM1的投加量为0.03 g/L时,浓度为0.05 mmol/L的难降解有机物—2,4-二氯苯酚,在吸附后2 h内降解完全. NCM1/PMS降解体系受环境条件的影响较纯自由基体系小. ③循环试验的结果表明,该材料可实现多次循环利用且催化效率基本保持稳定. ④对降解完成后体系中的金属离子进行测定发现,新制备的催化剂在催化降解过程中,金属离子仅有微量溶出,而原始废渣则大量溶出金属离子,说明与三聚氰胺混合热解可有效固定废渣中的金属. ⑤经淬灭试验、D2O替换和EPR测试等一系列试验,证明新催化剂催化单过硫酸盐降解有机污染物体系中硫酸根自由基和单线态氧均具有一定贡献,但还存在其他未被探明的机理. 研究显示,新制备的NCM1具有高PMS催化活性以及良好的稳定性和环境友好性,展现出巨大的应用潜力,对锂电池回收废渣的处理处置具有参考意义.   相似文献   

6.
为研究Cu/O2/HA(HA为盐酸羟胺)体系的氧化能力,以MO(甲基橙)为目标物,对该体系生成·OH(羟基自由基)的过程及机理进行了探讨,并分别考察了HA投加量(以c计)、pH、Cu(Ⅱ)投加量(以c计)和O2通量对MO降解的影响. 结果表明:Cu能够有效催化HA与O2的反应,生成大量H2O2,并进一步生成·OH,有效降解MO. HA投加量越高,MO降解率越高,但过高的HA投加量在初始阶段会对MO的降解形成抑制,最佳HA投加量为3 mmol/L;受到HA质子化的影响,反应的最适pH约为5.5;由于Cu(OH)2不利于催化HA与O2的反应,最佳Cu(Ⅱ)投加量为20 μmol/L;O2通量对MO的降解影响较小,最佳O2通量为0.15 L/min;Cu/O2/HA体系降解MO的初始阶段符合一级动力学模型. 研究显示,Cu/O2/HA体系具有良好的氧化能力,能够有效降解水中的MO,最佳反应条件下MO降解率达86.5%.   相似文献   

7.
为研究MFC(微生物燃料电池)产生电能活化PDS(过硫酸盐)对偶氮染料的降解能力,以MO(甲基橙)为目标污染物,探讨pH、c(PDS)、初始c(MO)、无机阴离子等对MO降解的影响及降解机理.结果表明:①当pH为3~5时,MO降解率随pH降低而升高;当pH低于3时,MO降解率随pH的降低而降低;MO降解率随初始c(MO)的增大而降低.当c(PDS)为1~2 mmol/L时,MO降解率随c(PDS)增加而增大;当c(PDS)超过2 mmol/L后呈减小趋势.②最佳反应条件[pH为3、初始c(MO)为0.10 mmol/L、c(PDS)为2 mmol/L]下,反应4 h后MO降解率可达86.5%.③无机阴离子HCO3-、NO3-、CO32-对MO降解存在抑制作用,当阴离子投加量为10 mmol/L时,降解率分别为64.2%、68.8%、76.1%,而Cl-对MO降解无显著影响.④淬灭试验表明,体系的主要活性物质为SO4-·及少量·OH.⑤通过紫外-可见光谱扫描,依据MO结构与特征吸收峰的关系,推测MO降解途径,即MO发色基团偶氮双键断裂,生成含苯环类中间产物,最终矿化为CO2和H2O.研究显示,MFC能有效活化PDS产生SO4-·,对偶氮染料有较好的降解和矿化效果.   相似文献   

8.
以污泥基活性炭为基质,采用化学共沉淀法制备了不同过渡金属(Mn、Co和Cu)掺杂的铁磁污泥基活性炭(T-FMSAC,T=Mn、Co、Cu),重点考察了过渡金属种类及其掺杂比例对T-FMSAC催化臭氧氧化去除水中对氯苯甲酸(p-CBA)效能的影响,并对臭氧与T-FMSAC催化剂的最佳投量进行了研究确定.结果表明,在臭氧投加量为1mg/L,催化剂投加量为40mg/L条件下,反应进行40min后,Mn-FMSAC的催化活性最高,其催化臭氧氧化对p-CBA的去除率为76%,高于Co-FMSAC(72%)及Cu-FMSAC(65%).并且,随着金属掺杂比例的增加(100:1,50:1,25:1,10:1(污泥量:金属掺杂量,W:W)),T-FMSAC催化臭氧氧化对p-CBA的去除率逐渐降低.在100:1掺杂比例下,催化剂不仅能够简单地通过磁铁分离,且具备最佳催化活性.100:1Mn-FMSAC催化臭氧氧化工艺对p-CBA的去除率随臭氧浓度的增加而增加;当臭氧投加量为1mg/L时,100:1Mn-FMSAC催化剂的最佳投量为40mg/L.叔丁醇的加入显著抑制了100:1Mn-FMSAC催化臭氧氧化降解p-CBA的效能,表明该反应过程遵循羟基自由基反应机制.  相似文献   

9.
热活化过硫酸盐(PS)可降解有机污染物,但通常需要较高的反应温度,成为制约降解效率的关键因素之一.为提高热活化PS效率,向反应体系中加入活性炭(AC)并以对硝基苯酚(PNP)为目标污染物,考察AC强化热活化PS降解PNP的效率,分析pH值、PS浓度和AC投加量等因素对PNP降解的影响,确定最佳反应条件.结果表明,AC可以明显强化热活化PS降解PNP,在AC=1.0g/L,PS=2.0mmol/L,PNP=10.0mg/L,T=50℃和pH=3.5条件下,120min时AC/PS体系对PNP降解率可达100.00%,而PS体系对PNP降解率仅为31.69%.自由基猝灭实验表明,AC/PS/PNP体系为自由基反应,SO4·-和·OH共同参与PNP降解且以SO4·-为主导.机制分析阐明AC上的表面缺陷为活性位点,其与PS中O—O键作用导致O—O键键能降低,进而O—O在热活化下均裂形成SO4·-.PNP降解中间产物分析表明AC仅提高了热活化PS降解PNP反应速率,未改变PNP的降解路径.  相似文献   

10.
张事成  李思敏  朱佳 《环境工程》2022,40(10):40-48
采用水热-煅烧法合成了CuO/g-C3N4催化剂,利用X射线衍射仪、扫描电镜、红外吸收光谱和X射线能谱对其基本性能进行表征,进一步研究了不同参数下CuO/g-C3N4活化过二硫酸盐(PDS)体系对有机污染物(甲基橙,MO)的去除效果。活化实验结果表明:CuO/g-C3N4对活化PDS降解MO具有明显效果。优化实验结果表明:在催化剂的水热时间为8 h,CuO复合比为10%,反应体系中催化剂初始浓度为1.00 g/L,PDS初始浓度为4 mmol/L,pH=3的条件下,30 min内MO的降解率高达99.20%。机理分析表明催化剂表面的硫酸根自由基(SO4-·)和羟基自由基(·OH)是降解MO的主要活性物质,并且有少量超氧自由基(·O2-)参与其中。对该催化剂进行5次重复实验后,活化PDS对MO降解率仍保持在90%以上,表明该催化剂有较好的稳定性。  相似文献   

11.
热活化过硫酸盐(PS)可降解有机污染物,但通常需要较高的反应温度,成为制约降解效率的关键因素之一.为提高热活化PS效率,向反应体系中加入活性炭(AC)并以对硝基苯酚(PNP)为目标污染物,考察AC强化热活化PS降解PNP的效率,分析pH值、PS浓度和AC投加量等因素对PNP降解的影响,确定最佳反应条件.结果表明,AC可以明显强化热活化PS降解PNP,在AC=1.0g/L,PS=2.0mmol/L,PNP=10.0mg/L,T=50℃和pH=3.5条件下,120min时AC/PS体系对PNP降解率可达100.00%,而PS体系对PNP降解率仅为31.69%.自由基猝灭实验表明,AC/PS/PNP体系为自由基反应,SO4·-和·OH共同参与PNP降解且以SO4·-为主导.机制分析阐明AC上的表面缺陷为活性位点,其与PS中O—O键作用导致O—O键键能降低,进而O—O在热活化下均裂形成SO4·-.PNP降解中间产物分析表明AC仅提高了热活化PS降解PNP反应速率,未改变PNP的降解路径.  相似文献   

12.
顾小钢 《中国环境科学》2018,38(4):1385-1390
采用盐酸羟胺(HAH)强化Fe(Ⅲ)-EDDS(乙二胺二琥珀酸)活化过硫酸盐(PS)体系降解水溶液中的三氯乙烯(TCE).结果表明,Fe(Ⅲ)-EDDS/PS体系中加入HAH能够强化TCE去除效率,TCE降解效率随PS或HAH初始浓度增大而增强,但实验条件下存在最佳投加量.当溶液初始pH值为3~7时,Fe(Ⅲ)-EDDS/PS/HAH降解TCE基本没有影响,但碱性条件会抑制TCE去除,HAH强化工艺能够有效缓解Cl-(1~100mmol/L)和低浓度HCO3-(1~10mmol/L)对TCE降解的抑制作用.与Fe(Ⅲ)-EDDS/PS相似,加入HAH后反应体系中存在SO4·-·OH和O2·-,但降解TCE的主导自由基由·OH转变为SO4·-.  相似文献   

13.
EDDS螯合Fe(Ⅲ)活化过硫酸盐技术对TCE的降解效果   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决传统Fe(Ⅱ)活化过硫酸盐过程中Fe有效性较低的问题,采用可生物降解的EDDS(乙二胺二琥珀酸)螯合Fe(Ⅲ)活化过硫酸盐处理水溶液中的TCE(三氯乙烯),考察c(过硫酸盐)、c〔Fe(Ⅲ)〕/c(EDDS)〔下称Fe(Ⅲ)/EDDS〕、溶液初始pH以及阴离子浓度对TCE降解效果的影响,并研究体系中产生的活性氧自由基. 结果表明:c(过硫酸盐)为15.0 mmol/L、Fe(Ⅲ)/EDDS为4时,60 min内TCE去除率达99.7%;提高c(过硫酸盐)、Fe(Ⅲ)/EDDS均有利于TCE降解,但超过一定限值后对TCE去除效果增强不明显;溶液初始pH(3~11)越高,TCE去除率越低;加入Cl-、HCO3-、SO42-和NO3- 4种阴离子均会抑制TCE降解,抑制程度表现为HCO3->Cl- >SO42->NO3-;自由基清扫试验证实体系中存在SO4-·、·OH和O2-·等3种活性氧自由基,·OH对TCE的降解起主导作用. 因此,EDDS螯合Fe(Ⅲ)活化过硫酸盐技术能够产生以·OH为主的活性氧自由基,从而快速高效去除水溶液中TCE,但降解过程受水质参数影响.   相似文献   

14.
以喹啉为处理目标物,采用Fe2+活化K2S2O8(PS)的高级氧化体系在不同环境因素下降解喹啉.结果表明:与单一PS体系和Fe2+体系相比,Fe2+/PS体系可以有效降解喹啉.在初始喹啉浓度为250mg/L,喹啉/PS物质的量比为1:10,PS/Fe2+物质的量比为3,初始pH3,反应温度为45℃,反应时间为80min的条件下,喹啉降解率可达100%.提高PS和Fe2+浓度均能有效提高喹啉降解率,但超过一定限值后对喹啉去除效果不明显.Fe2+/PS去除喹啉的过程符合一级反应动力学.溶液初始pH值越高,喹啉去除率越低;反应温度越高,喹啉去除率越高.自由基淬灭实验证实,Fe2+活化PS体系中有SO4-·和OH·的存在,其中由SO4-·产生的OH·对喹啉的降解占主导地位.通过GC/MS检测到2种中间产物8-羟基喹啉和2(1H)-喹啉酮,据此推测基于硫酸根自由基强化喹啉降解的可能路径.大肠杆菌急性毒性实验结果证实,虽然Fe2+/PS体系去除喹啉过程中产生了毒性更强的中间产物,但酸性条件和较高的反应温度有利于体系脱毒.  相似文献   

15.
以喹啉为处理目标物,采用Fe2+活化K2S2O8(PS)的高级氧化体系在不同环境因素下降解喹啉.结果表明:与单一PS体系和Fe2+体系相比,Fe2+/PS体系可以有效降解喹啉.在初始喹啉浓度为250mg/L,喹啉/PS物质的量比为1:10,PS/Fe2+物质的量比为3,初始pH3,反应温度为45℃,反应时间为80min的条件下,喹啉降解率可达100%.提高PS和Fe2+浓度均能有效提高喹啉降解率,但超过一定限值后对喹啉去除效果不明显.Fe2+/PS去除喹啉的过程符合一级反应动力学.溶液初始pH值越高,喹啉去除率越低;反应温度越高,喹啉去除率越高.自由基淬灭实验证实,Fe2+活化PS体系中有SO4-·和OH·的存在,其中由SO4-·产生的OH·对喹啉的降解占主导地位.通过GC/MS检测到2种中间产物8-羟基喹啉和2(1H)-喹啉酮,据此推测基于硫酸根自由基强化喹啉降解的可能路径.大肠杆菌急性毒性实验结果证实,虽然Fe2+/PS体系去除喹啉过程中产生了毒性更强的中间产物,但酸性条件和较高的反应温度有利于体系脱毒.  相似文献   

16.
石月  彭湃  刘艳丽  吴丽  张祖麟  杨列 《中国环境科学》2021,41(11):5153-5159
构建了紫外-亚铁联合活化过硫酸盐的体系用于高效降解噻虫啉(Tiacloprid,THIA),以Fe2+浓度、过硫酸盐(Persulfate,PS)浓度、pH值、紫外功率为因变量,THIA去除率为响应值,通过中心复合设计法(Central Composite Design,CCD)建立因素和响应值之间的数学模型.模型拟合结果显示,当Fe2+浓度为0.318mmol/L,PS浓度为0.544mmol/L,pH值为3.054和紫外功率为58.133W时,模型预测THIA降解率最高为100%.验证实验结果(98.4%)与预测值基本一致,证明了响应曲面法用于优化紫外-亚铁联合活化过硫酸盐体系降解THIA的可行性.  相似文献   

17.
采用前置硫化法合成制备硫化纳米铁,研究其与过硫酸盐对硝基苯的联合降解效果,检测反应前后溶液中铁离子和TOC浓度变化,对反应前后的S-NZVI进行表征,分析S-NZVI和PS对NB的联合降解机制.以纳米硅胶溶液为胶结剂,以PS为活性成分,制备缓释PS溶胶,注入砂柱中扩散形成凝胶,与S-NZVI构成S-NZVI/PS组合反应带,研究其对模拟硝基苯污染地下水的原位修复效果.结果表明,S-NZVI能够高效去除NB并生成大量苯胺(AN),S-NZVI被PS氧化产生的Fe2+与PS组成活化过硫酸盐,对AN具有较好的降解和矿化效果.当NB浓度为100mg/L、S-NZVI和PS的投加量分别为0.5,2.5g/L时,NB去除率达91%,AN出水浓度为1.96mg/L,TOC去除率达64.09%.反应后S-NZVI的主要铁氧化产物为Fe3O4和FeO(OH).反应带实验结果表明,S-NZVI/PS组合反应带可有效去除地下水的NB并高效消减NB还原产生的AN,当进水中NB浓度为100mg/L,流量为0.4mL/min,注入S-NZVI含量为1200mg/L的浆液200mL,二氧化硅含量为30%、PS含量为12.5%的PS凝胶4.8g时,S-NZVI/PS组合反应带7d内对AN的去除率最高达97.6%,NB当量累计去除率为83.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号