共查询到16条相似文献,搜索用时 62 毫秒
1.
氮沉降对全球尺度的粮食生产、碳氮循环及大气环境质量均具有重要影响.本研究采用WRF-Chem模式对区域氮沉降过程进行数值 模拟,着重分析氮干沉降的时空分布特征.结果表明:在空间场上,我国氮干沉降主要体现出东高西低的特点,华北平原和川渝地区为氮沉降高值区,这主要与排放高值区的空间分布有关,NH3和HNO3 沉降量都是在东部最大,这与东部一直以来较高的经济增长速度和农业活动水平有直接联系.从氮的不同组分形式(气态/颗粒态氮或者氧化性/还原性氮)来看,气态氮较颗粒态氮对总氮沉降的贡献更大,贡献比达66%; 相较氧化性氮,还原性氮对总氮沉降的贡献较大,贡献比为57%.进一步分析不同下垫面类型的氮干沉降结果,气态氮的干沉降均是在城市和农田下垫面上更高.NH3 干沉降通量主要受排放源影响,HNO3 干沉降通量则受气象条件影响较大,而排放源和气象条件均有很强的季节性 变化.NH4+和NO3-在森林下垫面上的干沉降通量远多于其它类型的下垫面,这主要是因为森林下垫面粗糙度比较大,相应的摩擦速度也较大,湍流比较活跃,有利于粒子污染物的沉积. 相似文献
2.
珠江三角洲大气干沉降金属元素浓度和来源分析 总被引:2,自引:0,他引:2
本文对珠三角地区137个大气干沉降样品中金属元素含量和来源进行了分析。金属元素几何平均浓度高低依次为Fe>Zn>Mn>Pb>Cu>(Ni,Cr,Rb)>V>(Li,Y)>Co>(Cd,Cs)>Tl,其中Fe的浓度最高为31573mg/kg,Tl的浓度最低为1.0mg/kg,金属元素浓度主要与周边环境和当地发展类型影响有关,采样点位于工业区周边的金属元素浓度最高,城市居民区和近郊区次之,远离城市和工业地区的相对较低。富集因子分析表明Cd、Zn、Cu、Ni和Pb元素受人类活动影响显著,污染严重;相关性分析得出Cu、Pb、Zn具有显著性相关,Cr、Ni分别与Mn、Co、Li、Zn显著性相关,表明它们可能具有相同来源;因子分析得出Rb、Cs、Y、Mn、Ni、Li、Co主要受到土壤扬尘来源的影响,Pb、Cu、Cd及Ni、Cr与当地工业化和城市化过程密切相关,其中Pb元素主要受到燃煤和交通扬尘的污染,Cu和Cd元素主要来源于工业生产中产生的重金属污染。 相似文献
3.
采用WRF-CMAQ模式对珠江三角洲地区2015年1月进行数值模拟,结合CMAQ的集成源解析方法ISAM对S、N及其干沉降的来源贡献进行分析.结果表明:珠江三角洲地区S、N干沉降量高值主要分布在广佛交界处以及珠江口附近,其逐日变化趋势主要受质量浓度变化影响,但在部分时间段受干沉降速率的影响亦相当显著.珠江三角洲区域内排放源对于S干沉降的平均贡献占比为36.2%,与其质量浓度区域内贡献占比相当,SO2干沉降速率增加以及背景风场变弱会使区域内贡献占比增加;区域内源对于N干沉降的平均贡献占比为32.4%,远小于其质量浓度区域内贡献占比,当NO2质量浓度减少,使得HNO3的质量浓度和干沉降量减少时,区域内贡献占比增加.对于珠江三角洲典型城市,广州S干沉降的本地贡献为27.7%,N为14.2%;江门S干沉降的本地贡献为9.6%,N为8.8%.2个城市对比而言,广州受本地的影响较江门显著,江门受其上风方向广州和佛山两市输送的影响显著,但当背景风场减弱时,江门本地贡献会有明显增加. 相似文献
4.
采用WRF-CMAQ模式对珠江三角洲地区2015年1月进行数值模拟,结合CMAQ的集成源解析方法ISAM对S、N及其干沉降的来源贡献进行分析.结果表明:珠江三角洲地区S、N干沉降量高值主要分布在广佛交界处以及珠江口附近,其逐日变化趋势主要受质量浓度变化影响,但在部分时间段受干沉降速率的影响亦相当显著.珠江三角洲区域内排放源对于S干沉降的平均贡献占比为36.2%,与其质量浓度区域内贡献占比相当,SO2干沉降速率增加以及背景风场变弱会使区域内贡献占比增加;区域内源对于N干沉降的平均贡献占比为32.4%,远小于其质量浓度区域内贡献占比,当NO2质量浓度减少,使得HNO3的质量浓度和干沉降量减少时,区域内贡献占比增加.对于珠江三角洲典型城市,广州S干沉降的本地贡献为27.7%,N为14.2%;江门S干沉降的本地贡献为9.6%,N为8.8%.2个城市对比而言,广州受本地的影响较江门显著,江门受其上风方向广州和佛山两市输送的影响显著,但当背景风场减弱时,江门本地贡献会有明显增加. 相似文献
5.
目的研究气候变化对污染物浓度的影响,进而了解其对环境空气质量的影响。方法利用WRF-Chem模拟2014年1月、7月(代表现在)和2050年1月、7月(未来)长三角地区的气象要素和空气质量的数据,研究气候变化对该区域臭氧浓度的影响。结果在夏季,未来(2050年7月)与现在相比(2014年7月),整个长三角区域的臭氧浓度变化幅度较小,约为-0.09×10~(-9),且呈现出北部增加,南部减少的趋势,在长三角北部的陆地地区,臭氧浓度增加达到极大值(15.0×10~(-9))。在冬季,与2014年1月的数据比较,未来(2050年1月)整个长三角地区臭氧比现在降低约7.9%,其中在上海以东洋面上减少达到极值(-25.1%)。结论在夏季,导致长三角北部地区臭氧浓度升高的主要原因是太阳辐射量的增加、VOC和NOx浓度的升高、边界层高度的降低以及增强南风的输送有关。长三角南部地区臭氧浓度的减少,主要原因是其太阳辐射的减少以及风速的增加。在冬季,在南通、上海以东洋面上臭氧减少的幅度较大,这与温度的降低、辐射的减少以及NOx浓度的增加有关。长三角南部区域的臭氧浓度有所增加,这与该区域太阳辐射的增加以及区域范围内的输送有关。在制定臭氧控制策略时,应该考虑未来气候变化的影响。 相似文献
6.
上海地区臭氧数值预报 总被引:11,自引:0,他引:11
基于WRF-Chem在线区域化学/传输模式构建了区域化学天气数值预报业务系统,评估了2013年5月1日至9月30日期间的1h和8h臭氧业务数值预报效果.结果表明:臭氧预报没有明显的系统偏差,预报偏差在0两侧基本呈对称分布;数值预报具有较高的准确性,其中8h臭氧的效果略好,不同时效预报的相关系数均在0.8上下,浓度平均偏差和偏差中值都只有1′10-9~2′10-9,臭氧达标日和污染日预报都有很高准确率和CSI/TS评分,首要污染物也较准确;不同时效的预报效果接近,48h时效略好,24h和72h相当;数值预报也存在一定不足,存在极个别显著偏高或显著偏低的情况,同时由于等级划分阈值的存在,等级预报的准确性明显低于浓度和分指数预报.综合地看,数值预报可以提供较为准确的臭氧预报,为空气质量预报预警业务提供有力的支撑,但分指数等级预报上仍需要进一步提高. 相似文献
7.
基于国家干线公路交通量信息,运用GIS的路网线性参考系统,计算珠三角地区夏季NOx和VOCs排放量,使用最大增量反应活性(MIR)和经验公式,分别估算VOCs和NOx的O3生成及其强度的空间分布特征.结果表明,夏季VOCs的排放量占比总体上与各类型车辆数占比一致,而汽油车的NOx排放量占比与车辆数差异较大;VOCs排放的分布与NOx基本相似,广州市是NOx和VOCs排放量最高的城市,珠海、中山和江门3个城市的排放量较小;NOx的O3生成总量与生成能力成反比,所有车型中烯烃和芳香烃对O3生成贡献率都是最大的,而排放量较大的烷烃生成O3量最低;路网密度大的广州市、深圳市,汽车排放的NOx和VOCs量相对较高,其产生的O3浓度也较高,对于路网密度较小的城市(如珠海市),其O3污染主要以交通干线为中心,向外扩散,O3生成量较小. 相似文献
8.
9.
大气颗粒物及其重金属严重威胁着生态系统功能及人类健康。为研究江苏省大气颗粒物的干沉降输入规律及农业区大气重金属的输入通量,该文利用参数化颗粒物干沉降速率模型,结合江苏省气象数据-空气污染物数据,计算了干沉降速率及通量。结合已有文献数据,对江苏省农业区域大气重金属沉降通量进行估算。结果表明:不同土地利用类型下,江苏省不同粒径颗粒物干沉降速率均呈现白天高、夜间低的日变化规律。农业区颗粒物干沉降速率具有较为明显的地域分布特征,主要表现为东南高、西北低、中部及部分沿海地区次之的分布情况。自2018年以来江苏省颗粒物干沉降通量逐年降低,细颗粒和粗颗粒干沉降通量分别在2019年和2020年出现显著降低,空间分布上表现为城区高于周边远郊及农业区,地域上则表现为西北高、东南低。农业区重金属干沉降通量中Pb、Mn和Cu均有较高的输入。农业区PM2.5中12种重金属的年均干沉降通量合计约10.6~298.2 g/(hm2·a)。 相似文献
10.
为了解三峡库区腹地大气中活性氮的组成及干沉降通量,于2015年每个季节选取代表性月份在万州城区采集了气体和颗粒物样品.利用离子色谱法测定氮素浓度,同时结合大叶阻力模型模拟计算的干沉降速率值,估算了不同形态氮素的干沉降通量.结果表明,HNO3的干沉降速率值最大,年均值为0.39cm/s,约为其它氮素的3~8倍.NO2和NH3是大气活性氮的主要赋存形态,年均浓度值分别为(11.7±3.9)和(11.0±5.3)μg N/m3,两者之和约占总无机氮浓度的80%.万州城区总无机氮干沉降总量为8.5kg N/(hm2·a),其中氧化态氮(NO2、HNO3、颗粒态NO3-)和还原态氮(NH3、颗粒态NH4+)干沉降通量分别为3.5,5.0kg N/(hm2·a),占干沉降总量的41.4%和58.6%.因此,为有效控制三峡库区腹地的氮素污染,应重点关注NH3的减排. 相似文献
11.
自2013年以来,珠三角地区SO2、NOx及颗粒物等污染物浓度逐渐下降,但臭氧污染日渐凸显.作为二次污染物,臭氧污染演变受到排放与气象条件共同影响.而评估本地前体物人为排放变化、外部传输和气象变化对臭氧污染演变的影响,并识别臭氧污染长期演变趋势的重要驱动因素,是开展区域臭氧污染防控的关键基础.因此,本文采用WRF-SMOKE-CMAQ模拟平台,以2006—2017年广东省和中国大气污染物排放趋势清单为输入清单,以2014年的气象数据为基准年气象场,通过设置不同案例,结合观测数据,定量评估本地、外部排放变化和气象变化对珠三角秋季O3污染长期演变趋势的影响.结果表明:在2006—2017年期间,整个珠三角9—10月臭氧日最大8 h(MDA8)浓度上升主要由人为排放变化主导,平均每年贡献0.7μg·m-3,而气象条件总体上抑制了2006—2017年期间珠三角秋季臭氧MDA8浓度的增长,使得秋季臭氧MDA8浓度上升速率下降为0.2μg·m-3·a-1;人为排放变化... 相似文献
12.
珠三角土地覆被资料优选及在WRF模式中的初步应用 总被引:1,自引:1,他引:1
针对WRF模式中珠三角地区土地覆被资料不准确的现况,从国内外主要的土地覆被产品中筛选与统计年鉴资料相符的产品,与模式内置的静态资料进行对比试验以评估土地覆被资料对模拟结果的影响.试验模拟的时段设为2010—2011年1、4、7、10月.结果表明:①WRF模式内置的MODIS资料在珠三角地区对于建成区高估超过3倍,而主要土地覆被遥感产品中GLC2009资料最为接近统计年鉴和调查结果值;②GLC2009土地覆被数据相比模式内置的MODIS资料,对珠三角区域地表温度、风速、相对湿度的模拟有一定改善,2 m地表气温与观测的平均偏差从0.32℃降至0.08℃;2 m水汽压平均偏差从0.31 hPa降至0.28 hPa;10 m风速平均偏差从0.59 m·s-1降至0.38 m·s-1,其中10 m风速对于土地覆被变化最为敏感;③从空间分布上看,GLC2009资料相对内置的MODIS资料,其对整个模拟区域内的温度、湿度模拟结果有所改善,并且对珠三角城市外围区域风速模拟结果的改善明显;④模拟结果的变化是由于土地覆被类型及其比例的变化直接改变了模式中地表反照率、粗糙度、植被覆盖率、植被气孔阻抗等参数的取值引起的. 相似文献
13.
14.
珠江三角洲秋季典型气溶胶污染的过程分析 总被引:2,自引:0,他引:2
为了解大气中各物理和化学过程对气溶胶浓度的贡献情况,利用Models-3/CMAQ模式系统对珠江三角洲(以下简称珠三角)秋季典型气溶胶污染进行研究.模拟时间是2012年10月,期间珠三角主要受高压系统的控制,在17日冷锋过境前后高压天气形势发生转变,风向从东北风转为偏东风.结果表明,珠三角秋季PM2.5浓度呈现西高东低的水平分布特征,随着高度的上升浓度高值中心也向西南方向偏移;受大气边界层高度的影响,陆地上PM2.5输送高度呈现白天高夜晚低的变化特征;过程分析结果表明源排放,水平输送和垂直输送是影响近地面PM2.5浓度变化的主要过程;本地污染物排放是城市中心(广州站)PM2.5浓度升高的主要原因,而在下风向位置(江门站)外来污染物的水平输送过程是PM2.5的最主要来源. 相似文献
15.
利用Models-3/CMAQ模式系统对珠江三角洲2009年11月下半月的大气PM10污染状况进行模拟,重点针对23~29日期间的严重PM10污染事件,采用过程分析技术,探讨各种大气物理、化学过程对PM10浓度演变的作用规律.对代表性站点的分析结果表明,导致污染期间近地面PM10浓度升高的大气过程主要是源排放(例如麓湖、开平)和大气传输(万顷沙、金果湾),重要的PM10去除途径包括大气传输(麓湖、开平)、干沉降(万顷沙)和气溶胶过程(金果湾).空间分布上,PM10源排放强度较高的珠三角中部地区,同时也是向外输出PM10的主要区域和干沉降去除的高值地区.在近地面,气溶胶过程在珠三角中部主要起消耗PM10的作用,二次颗粒物的生成多发生在珠三角西部和南部;气溶胶过程对高空PM10主要表现为生成作用,尤其珠三角中部地区的生成速率相对更高. 相似文献
16.
采用珠三角常规空气污染物与成分监测数据,通过分析对比2020年不同阶段的污染物浓度与气象等数据,研究了2020年珠三角臭氧污染特征与其主要成因。结果表明,2020年各月珠三角超标天首要污染物是O3,珠三角2020年O3评价浓度为148μg/m3,同比下降16%,AQI达标率同比上升9.5%。2020年O3污染相对严重的月份是4、8~11月,对应的月度O3评价浓度分别达到175,164,166,171,162μg/m3,均超过国家二级标准;其它月份均达标,6~12月O3污染情况同比改善明显,O3污染减轻使AQI达标率同比上升明显。2020年一季度受春节假期和疫情因素等共同影响,大气污染物排放量明显减少,但O3浓度下降不明显,主要由于日照时数同比上升约19%;4月全面复工复产,以及辐射相对较强的气象条件,使O3评价浓度同比上升约58%;5~8月“百日服务”与9~12月“百日行动”采取的污染防治措施有效降低O3前体物排放量,NO2浓度同比下降了22%~23%,VOCs浓度下降了18%~26%,使2个阶段的O3评价浓度均同比下降了20%左右。 相似文献