首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
北京市民用燃煤烟气中气态污染物排放特征   总被引:6,自引:3,他引:6  
以北京远郊农村居民常用的蜂窝煤、煤球、烟煤散煤为实验用煤,开展燃烧实验.研究了烟气无机污染物排放因子、VOCs释放情况.结果表明在充分燃烧的条件下,蜂窝煤、煤球、烟煤气态污染物SO2排放因子分别为1.50、1.91、1.62kg·t~(-1);NOx排放因子分别为0.420、0.901、2.20 kg·t~(-1);CO排放因子分别为22.4、37.3、87.3 kg·t~(-1).燃烧排放的NOx和CO的排放因子顺序关系为:烟煤煤球蜂窝煤;SO2的排放因子大小顺序分别为:煤球烟煤蜂窝煤.获得了北京市2014年3种民用煤燃烧排放的气态污染物的排放清单,烟煤散煤排放的SO2超过了0.55万t,NOx超过了0.75万t,CO超过了29万t.3种煤质燃烧过程中点火和封火阶段VOCs排放浓度相对较高,各阶段VOCs排放因子为点火阶段最高,封火阶段次之.  相似文献   

2.
上海市交通干道颗粒物中水溶性无机离子的污染特征   总被引:1,自引:0,他引:1  
王晓燕 《环境科学与管理》2012,37(3):140-145,162
2011年2月至2011年6月在上海市中心城区交通干道区采集29个TSP样品,对颗粒物中水溶性无机离子的化学特征进行了分析比较。结果表明:在9种水溶性无机离子(F-、Cl-、NO3-、SO42-、NH4+、Ca2+、K+、Mg2+和Na+)中,SO42-和NO3-浓度最高,分别占水溶性无机离子总浓度的36.1%和30.6%。颗粒物的阴离子/阳离子比值平均为1.12,相关性方程的斜率K为1.02,说明颗粒物偏酸性。计算的NO3-/SO42-比值的均值为0.85,表明移动排放源(机动车)对颗粒物中水溶性组分的贡献已接近于固定排放源(燃煤)。计算得出硫的转化率(SOR)均值为0.28(0.12~0.51),氮的转化率(NOR)均值为0.19(0.06~0.40),表明二次颗粒物生成是主要来源之一。  相似文献   

3.
成都夏冬季PM2.5中水溶性无机离子污染特征   总被引:6,自引:5,他引:1  
利用大气细颗粒物水溶性组分及气态前体物在线监测设备(GAC-IC)对成都市2017年夏、冬两季大气PM2.5中水溶性无机离子(WSIIs)及气态前体物进行了连续观测,对其污染特征及冬季一次典型污染过程进行了深入分析.结果表明,成都冬季PM2.5质量浓度为100.2μg·m-3,显著高于夏季(34.0μg·m-3).WSIIs是PM2.5的重要组成,对夏、冬季PM2.5的贡献分别可达52.9%和53.3%.夏、冬季的二次离子(SNA)占WSIIs的比例分别为73.2%和87.6%,其中,SO42-和NO-3分别是夏、冬季SNA的主导组分,对SNA的贡献分别为37.7%和59.7%.冬季NO-3/SO42-比值(2.7)显著高于夏季(0.8),体现了移动源(尤其是机动车源)对该季节PM<...  相似文献   

4.
郭广勇 《广州环境科学》2004,19(1):14-16,22
综述了国内外利用等离子体处理工业废气的研究进展,分别讨论了处理无机污染物和有机污染物所使用的等离子反应器的结构、反应条件及其反应机理,并提出了今后等离子体处理气态污染物的研究重点在于激励电源特性和反应器结构。  相似文献   

5.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:5,自引:0,他引:5  
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

6.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   

7.
为确定PM2.5中水溶性无机阴离子的含量,本文采用戴安ICS900离子色谱仪对F-、Cl-、NO-2、NO-3、SO2-4进行测量,实验表明,这种测量方法操作简单、测量结果准确度高、测量速度快,能同时测定多种水溶性无机阴离子。  相似文献   

8.
以自贡市城区二氧化硫允许排放总量计算为例,探讨了进行大气污染物排放总量控制时制态污染物允许排放总量计算以及将该总量分配到单个污染源的计算方法。该方法简便、实用、可为中小城市气态污染物排放总量控制及核发排污许可证提供科学依据。  相似文献   

9.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

10.
炼焦过程及周边环境颗粒物中水溶性无机离子特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为明确炼焦过程排放颗粒物及周边环境颗粒物中水溶性无机离子的污染特征,于2012年5月利用改良的标准大体积总悬浮颗粒采样器采集燃烧室废气烟囱排放、焦炉顶无组织排放及焦炉周边环境空气TSP(total suspended particulates,总悬浮颗粒物)样品,使用Staplex234大流量采样器采集焦炉顶无组织排放及焦炉周边环境空气PM1.4样品,采用ICS-90离子色谱仪测试样品中SO42-、NH4+、Ca2+、Cl-、NO3-、F-、Mg2+、K+、Na+共9种水溶性无机离子.结果表明:SO42-为炼焦过程排放的特征离子.炼焦过程燃烧室废气烟囱排放的TSP中总水溶性无机离子质量浓度最高,为(5 493±901)μg/m3;其次为焦炉顶无组织排放的TSP,其总水溶性无机离子质量浓度为(902±222)μg/m3;焦炉周边环境空气的TSP中总水溶性无机离子质量浓度最低,为(712±288)μg/m3.SO42-为燃烧室废气烟囱排放TSP与燃煤锅炉烟气排放颗粒物中共有的主要特征离子,但与燃煤锅炉烟气相比,燃烧室废气烟囱排放的w(SO42-)略低,w(F-)则相反.NH4+较易富集于焦炉顶无组织排放的细颗粒物中,而SO42-则较易富集于粗颗粒物中.研究显示,炼焦过程及焦炉周边环境空气颗粒物中9种水溶性无机离子分布特征不同,SO42-是燃烧室废气烟囱排放、焦炉顶无组织排放的TSP中质量浓度最高的水溶性无机离子.   相似文献   

11.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

12.
为了解烟花爆竹燃放对保定市大气污染物和PM2.5中水溶性离子及有机碳(OC)、元素碳(EC)浓度的影响,对保定市春节期间大气污染物和颗粒物组分的浓度特征进行了分析,并评估了烟花爆竹的贡献.结果表明:2019年春节期间烟花爆竹集中燃放期PM2.5、PM10、SO2、NO2、CO平均浓度比非集中燃放期分别增加了1.3、1.0、1.1、0.4、0.02倍;保定市春节期间禁燃措施施行后,除夕、初一2d污染物平均浓度、最高浓度和高浓度持续时间均明显下降,集中燃放期烟花爆竹燃放对PM2.5、PM10和SO2浓度贡献量从50%左右(2018年、2017年)下降至30%左右(2019年),其中SO2贡献量下降幅度超过PM2.5和PM10;组分分析表明,接待中心站点(主城区)、涿州站点(区县建成区)烟花爆竹燃放期K+、Mg2+、Cl-浓度在水溶性离子中的总占比分别为39.3%、51.1%,比非燃放期的占比显著上升;烟花爆竹燃放对PM2.5  相似文献   

13.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   

14.
华南地区大气气溶胶中EC和水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
利用1988~2010年在华南地区广州、深圳、海口等多地采得的126组样品,初步分析了华南地区不同时段不同地区和水溶性离子成分的浓度变化及其粒径分布特征.结果表明:各站的AEC(等效元素碳)浓度和水溶性无机离子浓度差异较大,Na+和Cl-基本表现为海岛站点>海岸站点>乡村站点>城市站点,其余主要离子成分和AEC则表现为城市站点>乡村站点>海岸站点>海岛.城市站点、乡村站点、海岸站点和海岛站点AEC质量浓度在不同年段随粒径分布的变化趋势比较一致的,基本呈双峰结构,主峰主要位于0.43~0.65mm,次峰主要位于4.7~5.8mm.根据各离子的粒径分布的相似性可以将各种离子的垂直分布形态分为3类:二次离子(SO42-、NO3-和NH4+)呈现明显的三峰分布形态;F-、Ca2+、Mg2+、Na+和Cl-呈双峰分布形态;K+和AEC呈单峰分布形态,主峰位于细粒子模态.各成分浓度随高度的变化则呈现不同的变化规律.降水对气溶胶粒子的清除作用是显著的,尤其是粒径大于1μm的颗粒,而1.1~2.1μm的粒子段是降水清除的关键区.局地污染中,AEC质量浓度随粒径的分布呈现出了很明显的“单峰”结构,且主要集中在次微米段粒径范围内.  相似文献   

15.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。  相似文献   

16.
香河夏季PM2.5水溶性无机离子组分特征   总被引:4,自引:0,他引:4  
2013年6月在中科院香河观测站对大气气溶胶化学组分特征进行研究.对PM2.5和PM10质量浓度进行在线监测,结果表明,观测期间PM2.5和PM10质量浓度均值与方差分别为(151.78±82.48)μg/m3和(250.47±106.99)μg/m3;SNA(SO42-、NO3-、NH4+)占PM2.5质量浓度的44.8%,且大多富集在粒径0.5~2.5μm的细颗粒物中.硫氧化率(SOR)、氮氧化率(NOR)平均值分别为0.35、0.31,SO2主要通过非均相的氧化反应转化为SO42-,NOx主要通过白天光化学反应转化为NO3-;灰霾和轻雾天较高的SOR和NOR表明,灰霾和轻雾天相比于清洁天有较多的SO2、NOx转化为SO42-、NO3-.气流后向轨迹分析表明灰霾和轻雾天空气质量受经过河北、山东及江苏北部气流影响.  相似文献   

17.
采用荷电低压颗粒物撞击器(ELPI)对两段烧结工艺经除尘、脱硫后排放的颗粒物进行采样,分析颗粒物的粒数和质量浓度以及颗粒物中所含水溶性离子的粒径分布特征.结果表明,烧结工艺经除尘、脱硫后颗粒物的粒数浓度在105~107cm-3,粒径小于0.1μm的颗粒物占总粒数浓度的67%~77%.颗粒物质量浓度呈双峰分布,烧结1分别在0.61μm和1.62μm处出现峰值,烧结2分别在0.37μm和1.62μm处出现峰值;对不同粒径段颗粒物中的水溶性离子进行分析后表明,烧结1排放的PM1中含量最高的是NH4+和Ca2+,分别为15.26%和14.84%;PM>1中含量最高的是SO42-,为33.52%.烧结2排放的PM1中含量最高的是Cl-,为28.12%;PM>1中含量最高的是SO42-,为29.21%.SO42-在烧结1中主要集中在6.89~10.23μm这一粗粒径段中,占60%左右,而在烧结2中主要集中在粒径小于2.5μm的细粒径段颗粒物中,占81%左右.Cl-在烧结1不同粒径段颗粒物中含量较低且分布较均匀,而在烧结2中Cl-在0.13~0.24μm粒径段颗粒物中出现峰值且含量较高达45%左右.  相似文献   

18.
深圳市城区大气颗粒物及主要水溶性无机离子的污染特征   总被引:1,自引:0,他引:1  
基于2015年深圳市大气颗粒物和主要水溶性无机离子的观测数据,深入分析了大气颗粒物的浓度变化及二次污染特征.结果表明2015年深圳的大气颗粒物(PM10、PM2.5、PM1)浓度虽然低,但其中细粒子占比高,PM2.5/PM10的比值高达0.744,甚至大于广州典型灰霾过程中的粗细粒子比.大气颗粒物浓度季节变化明显,秋冬高,春夏低.其日变化特征明显受到交通高峰的影响,汽车尾气可能是污染来源之一.SO42-、NO3-和NH4+(SNA)质量浓度在PM2.5中的占比超过1/3(37.7%),且全年硫转化率都大于0.1,这说明深圳市细颗粒物主要来自于二次转化.深圳大气颗粒物浓度受气象要素影响显著,与气压正相关,与气温、相对湿度、降水及风速负相关;若将风速、气温、气压、相对湿度和降水作为一个整体考虑,这些气象要素对深圳大气颗粒物浓度的影响大小是PM1 > PM10 > PM2.5.本工作不仅对深圳的大气环境管理和经济可持续发展有着重要参考价值,还对空气相对清洁地区的大气颗粒物和霾治理具有指导意义.  相似文献   

19.
于2014年3—5月在国家大气背景监测福建武夷山站采集了PM2.5及PM2.5~10样品,利用离子色谱对其中的水溶性组分进行分析,并同步收集气象因子及污染物质量浓度数据,结合后向气流轨迹,分离出受沙尘影响的样品,探讨了春季沙尘过程华东高山背景区域颗粒物中水溶性组分的特征.结果表明,春季武夷山背景点沙尘影响期间颗粒物质量浓度及各水溶性离子浓度均比非沙尘期高,在粗粒子中表现更为明显;沙尘期间NO-3在粗粒子中明显富集,NO-3浓度显著升高;受沙尘影响,粗粒子中阳离子与阴离子的当量浓度比及NO2的二次转化率均明显升高.  相似文献   

20.
Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU filter pack at two distinct urban sites during the winter and summer in Osaka, Japan and dry and rainy seasons in Ho Chi Minh City(HCMC),Vietnam.The aims are to investigate the contribution of water-soluble inorganic ions(WSIIs) to PM_(2.5), thermodynamic characterization and possible formation pathway of secondary inorganic aerosol(SIA).The PM_(2.5) concentration in Osaka(15.8 μg/m~3) is lower than that in HCMC(23.0 μg/m~3), but the concentration of WSIIs in Osaka(9.0 μg/m~3) is two times higher than that in HCMC(4.1 μg/m~3).Moreover, SIA including NH_4~+, NO_3~-and SO_4~(2-)are major components in WSIIs accounting for 90% and 76%(in molar) in Osaka and HCMC,respectively.Thermodynamic models were used to understand the thermodynamic characterization of urban aerosols.Overall, statistical analysis results indicate that very good agreement(R~2 0.8) was found for all species, except for nitrate aerosol in HCMC.We found that when the crustal species present at high amount, those compositions should be included in model calculation(i.e.in the HCMC situation).Finally, we analyzed the characteristics of NH_4~+– NO_3~-– SO_4~(2-)system.A possible pathway to produce fine nitrate aerosol in Osaka is via the homogeneous reaction between NH_3 and HNO_3, while nonvolatile nitrate aerosols can be formed by the heterogeneous reactions in HCMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号