首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
模拟缺氧/好氧(A/O)模式运行的序批式活性污泥法(SBR)处理系统,探究利用羟胺实现城市污水短程硝化的投加点优化.批次实验发现,溶解氧存在会降低羟胺对亚硝酸盐氧化菌(NOB)抑制效果的(20±0.5)%.此外,相较于未经缺氧处理和延长缺氧时间(>15min)处理,缺氧时间为l~5min可提高NOB活性抑制率13%~2...  相似文献   

2.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L-1,实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

3.
一体式部分亚硝化-厌氧氨氧化(CPNA)工艺的脱氮性能常因亚硝酸盐氧化菌(NOB)大量增殖导致的N03--N积累而恶化.本研究通过连续试验考察长期低剂量投加羟胺(NH2OH)对CPNA工艺原位恢复及其长期运行稳定性的影响.结果表明,低剂量投加NH2OH(1.5 mg?L-1)可快速原位恢复CPNA工艺,TN去除率在45...  相似文献   

4.
左富民  郑蕊  隋倩雯  钟慧  陈彦霖  魏源送 《环境科学》2021,42(11):5472-5480
以两类中试反应器(SBR,116.6 m3,活性污泥法和SBBR,64.8 m3,泥膜法)为对象,接种猪场废水处理厂的活性污泥,通过控制DO、曝气方式为主和外加Na NO2为辅的亚硝酸盐调控策略,考察不同反应器在启动一体式短程硝化-厌氧氨氧化(combined partial nitritation and ANAMMOX,CPNA)工艺过程中NO2--N浓度对ANAMMOX菌的影响.结果表明,在相同运行条件下,泥膜共生的SBBR更适于短程硝化的快速启动.尽管受到NO2--N抑制(100~129 mg·L-1,共计7 d),但SBR在第39 d成功启动了ANAMMOX工艺,其TNRR和TNRE分别为0.069 kg·(m3·d)-1和23.3%,而长达17 d的NO2--N抑制(129~286mg·L-1...  相似文献   

5.
常温城市污水同步亚硝化-厌氧氨氧化研究   总被引:3,自引:0,他引:3  
在常温14.7~24.7℃条件下,以城市生活污水为研究对象,采用SBR反应器,通过调整曝气量控制DO浓度为0.05~0.30 mg/L,进行了同步亚硝化-厌氧氨氧化试验.结果表明,SBR活性污泥反应器可以在常温条件下实现城市污水氨氮的同步亚硝化-厌氧氨氧化反应;DO可以作为其反应终点的指示参数,本试验确定为1 mg/L;在SBR探索试验中,NH+4-N消耗速率为0.164~0.218 kg/(m3·d),NO-3-N产生速率为0.026~0.036 kg/(m3·d),TN脱除速率为0.124~0.194 kg/(m3·d),去除效率为65%~75%;在SBR改进试验中,分别通过提高温度、增设非曝气运行时段和增加厌氧氨氧化菌生物量3个途径,避免了亚硝酸盐的积累,TN去除效率提高至77%~88%.考虑到脱氮速率和实际的工程应用条件,认为增加厌氧氨氧化菌的生物量是提高SBR反应器脱氮效能的优选途径.  相似文献   

6.
《环境科学与技术》2021,44(4):54-63
短程反硝化-厌氧氨氧化工艺因无须曝气,节省碳源,理论上可实现100%氮去除,成为近年来最具应用前景的新型污水生物脱氮技术。短程反硝化(NO_3~--N→NO_2~--N)又可分为胞外碳源(即外源短程反硝化,或短程反硝化)和胞内碳源(即内源短程反硝化)2种电子供体驱动类型,但目前鲜有研究对2种新型短程反硝化及其耦合厌氧氨氧化的专题报道。文章首先对比了短程反硝化和内源短程反硝化工艺原理;其次从反应时间、COD/NO_3~--N比、碳源类型、温度和溶解氧等5个方面总结了2种工艺的影响因素;随后对国内外基于短程反硝化/内源短程反硝化耦合厌氧氨氧化的研究进展进行综述;最后结合当前的研究现状提出目前急需解决的问题并展望了短程反硝化/内源短程反硝化耦合厌氧氨氧化技术的发展方向。  相似文献   

7.
周锋  刘勇弟  厉巍 《环境科学》2021,42(10):4864-4871
本研究以低碳氮比废水为基质,厌氧氨氧化污泥优配普通活性污泥为接种物,在新型气升式内循环反应器中培育同步短程硝化-厌氧氨氧化-短程反硝化颗粒污泥.结果表明,经过225 d的连续运行可培育成熟稳定的颗粒污泥,其总氮去除率高达91.4%.相较于絮状污泥,颗粒污泥中厌氧氨氧化活性显著增加,并且厌氧氨氧化活性在4个脱氮过程中活性最大,其次是短程硝化,且短程反硝化比活性是亚硝酸盐还原比活性的2.1倍.高通量测序结果表明,颗粒污泥中短程硝化和厌氧氨氧化的优势菌分别为NitrosomonasCandidatus_Brocadia,并相较于絮状污泥,它们的丰度分别增加至0.70%和0.57%.Thauera可能是颗粒污泥中潜在的短程反硝化优势菌,其丰度达到0.26%.RT-qPCR分析结果表明,相比接种阶段,短程硝化的功能基因amoAhao转录水平分别增加了3.5和1.5倍,厌氧氨氧化功能基因hzsA转录水平增加了2.1倍,短程反硝化过程中napAnarG转录水平增加的倍数之和是nirKnirS的倍数之和的4.8倍.本研究结果将为处理低碳氮比废水提供新的思路.  相似文献   

8.
短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液   总被引:1,自引:3,他引:1       下载免费PDF全文
为解决垃圾渗滤液中高浓度污染物对微生物的毒性抑制、生物处理出水有机物或氮不达标及投加碳源成本高的问题,采用UASB(上流式厌氧污泥床)-A/O(缺氧/好氧)反应器-ANAMMOXR(厌氧氨氧化反应器)工艺,通过短程硝化-ANAMMOX(厌氧氨氧化)深度处理实际垃圾渗滤液与生活污水混和液(体积比为1∶10),其ρ(CODCr)、ρ(NH4+-N)和ρ(TN)分别为(750±30)(290±10)和(300±10)mg/L,试验共进行90 d. 结果表明:CODCr、NH4+-N和TN的去除率分别为88%±1%、95%±1%和91%±1%,最终出水质量浓度分别为(67±5)(15±2)和(35±5)mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. A/O反应器中的ρ(FA)(FA为游离氨)在0.21~1.38 mg/L之间,可抑制NOB(硝酸细菌),使AOB(氨氧化细菌)成为优势菌种,从而实现并维持NO2--N积累率(70%~96%)较高的短程硝化,继而在ANAMMOXR中通过ANAMMOX去除残余NH4+-N和NO2--N,实现系统对氮的深度去除.   相似文献   

9.
以城市污水为研究对象,考察低温条件下通过生物添加强化氨氧化菌(AOB)活性,并进一步提高短程硝化-厌氧氨氧化一体化(SPN/A)工艺脱氮效果的可行性.平行运行2个序批式反应器(SBR) SBR1与SBR2,在间歇曝气条件下运行,控制温度由30℃梯度下降至15℃(30,27,24,21,18,15℃),随后逐步回升至30℃.在降温与升温过程中,向SBR2中定期投加短程硝化污泥强化AOB活性,SBR1作为空白试验不进行投加.结果表明,30℃时SBR1与SBR2在不外加短程硝化污泥的条件下均可成功启动并稳定运行,脱氮效果均良好;温度降至15℃时,SBR1与SBR2出水NH4+-N分别为36.38,33.10mg/L,总氮去除率分别为30.72%与35.76%,2个反应器脱氮效果均变差,SBR2较SBR1抗低温能力较强;梯度升温至30℃时,SBR1与SBR2总氮去除率分别升至52.43%与63.60%.通过考察SBR1与SBR2菌群活性可知,2个反应器的菌群活性均随着温度降低而降低,但SBR2的AOB丰度活性均高于SBR1;温度回升阶段,2个反应器的菌群活性有所升高,其中SBR2亚硝酸盐氧化细菌(NOB)活性受到抑制持续降低,推测这是因为SBR2中的AOB活性得到强化后,产生更多的亚硝酸盐,厌氧氨氧化菌(Anammox)可获得基质增多,造成Anammox活性丰度较高,所以SBR2脱氮效果相对较好.因此,在低温条件下通过生物添加强化SPN/A系统中AOB活性,可提高系统抗温度冲击能力,利于系统脱氮效果的恢复.  相似文献   

10.
为了探究游离亚硝酸(FNA)旁侧处理絮体污泥来恢复城市污水短程硝化/厌氧氨氧化一体化(PN/A)工艺的可行性,考察了不同浓度FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响,探究了SBR反应器两次采用FNA处理絮体污泥的运行效果.结果表明:采用0.45mgHNO2-N/L的FNA处理能够抑制NOB活性,亚硝积累率(NAR)达88.8%,但投加后第8d开始NOB活性逐渐恢复.采用1.35mgHNO2-N/L的FNA处理能够显著抑制NOB活性,NAR达89.1%,与此同时AOB活性也受到抑制,氨氮转化率降低为6.8%.采用增大好/缺氧时间比即t/t(由0.4~2.7)以及提高DO(由0.3~1.5mg/L)的方法能够恢复AOB活性,氨氮转化率达77.8%,在150d内NOB活性未恢复,NAR达98.1%.随着短程硝化的稳定实现,系统脱氮性能逐渐恢复,平均出水总无机氮(TIN)为8.2mg/L,平均TIN去除率为84.1%.因此,通过先用较高FNA处理絮体污泥同时抑制AOB与NOB,再采用增大t/t并提高DO来恢复AOB活性的策略,能够实现PN/A工艺短程硝化的恢复.  相似文献   

11.
Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox (PN/A), but the underlying mechanism remains unclear. In this study, mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria (AOB) in the outer layer. Second, the complete ammonia oxidizer (comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations, nitrite-oxidizing bacteria (NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation (0.15–0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications.  相似文献   

12.
对不同进水氨氮负荷下中试膜曝气生物膜反应器(MABR)部分亚硝化性能进行了考察,旨在确定在MABR中启动、优化和维持稳定亚硝化的控制策略.在进水氨氮表面负荷由(4.9±0.4)g·m-2·d-1(以N计,下同)升至(9.1±0.5)g·m-2·d-1的过程中,MABR氨氮去除负荷可以达到(5.7±0.5)g·m-2·d-1.当进水氨氮负荷为7.4 g·m-2·d-1时,本试验MABR部分亚硝化效果最佳,亚硝化率可达96.3%.部分亚硝化的维持需要控制合适的生物膜厚度,当生物膜厚度在110~170μm之间时,MABR亚硝化率在90%左右,能够有效实现对亚硝酸盐氧化菌(NOB)的抑制和亚硝酸盐的积累.利用微生物比氧利用率(SOURAOB)来反映生物膜中氨氧化菌(AOB)的活性,发现MABR生物膜的SOURAOB可达(133.9±31.1)mg·g-1·h-1(以每g SS利用的O2量(mg)计).实时定量PCR结果也表明AOB为MABR生物膜中的优势菌群,其微生物丰度比接种污泥高出3个数量级.通过调控进水氨氮负荷和生物膜厚度,维持AOB的种群优势和高活性并同时抑制NOB的活性,可以实现MABR的稳定部分亚硝化.  相似文献   

13.

短程反硝化耦合厌氧氨氧化(PD-A)工艺外加碳源和曝气成本较低、NO2 生成稳定高效、总氮去除率高,并且可以减少温室气体N2O的排放,是一种新型的生物脱氮工艺。现有关于PD-A的研究多以水质条件单一的模拟废水为对象,针对实际废水的研究尚少。分析了PD-A工艺的机制与特点,通过对比核心功能菌短程反硝化菌和厌氧氨氧化菌的最佳生长条件,并结合现有研究提出PD-A工艺运行的优化策略,继而分析了PD-A工艺在实际废水中的应用案例。结果表明,优化COD/NO3 、接种不同结构的污泥和添加生物膜载体等有利于工艺高效稳定地运行;PD-A工艺在实际生活污水、养殖废水、高硝酸盐废水的处理中实现了较高的脱氮率,说明其处理实际废水具有可行性。最后,对PD-A工艺的发展进行展望,认为应以实际废水为处理对象,进一步研究系统内核心菌群的协同作用机制和混合生物脱氮调控方式,以提升工艺的稳定性及碳氮协同处理效率。

  相似文献   

14.
为研究不同缺氧好氧比对半亚硝化稳定性的影响,采用连续流反应器,在常温(22~25 ℃),DO(0.3~0.5mg/L)和FA协同作用下实现了全亚硝化后,转变进水为AO除磷二级出水,并逐步向半亚硝化过渡.在此过程中考察了不同缺氧好氧比(0:1、1:1、2:1和3:1)对半亚硝化稳定性的影响.结果表明,缺氧好氧比为0:1时,很难维持低NH4+-N(40~70mg/L)亚硝化的稳定,缺氧好氧比为1:1、2:1、3:1时均能维持稳定的半亚硝化效果,相比之下缺氧好氧比为3:1时更加节能;在缺氧好氧比0:1,1:1,2:1,和3:1的过程中,氨利用速率分别提高了29.57%、44.27%、45.23%、49.63%.在整个过程中污泥沉降性能良好,SVI在65~130mL/g.  相似文献   

15.
通过一种新型的短程反硝化-厌氧氨氧化(Partial Denitrification/Anammox,PD/A)固定生物膜工艺,同步处理模拟的低C/N城市污水厂生活原水和二级出水,研究了不同进水C/N(1.3,1.5,1.6,1.8)和不同pH值(7.5,8.0,8.5,9.0)下该工艺的脱氮效果.结果表明,逐步提高进水C/N强化了系统的完全反硝化作用,平均NO3--N去除率从52.3%增长至85.7%;较高的进水pH值促进了短程反硝化过程中NO2--N的积累,继而强化了厌氧氨氧化的自养脱氮作用,平均NH4+-N去除率从82.2%增长至89.7%.在C/N=1.6、pH=9.0的条件下,该工艺达到了88.3%的TN去除率,出水TN稳定低于2mg/L.此外,分析了PD/A固定生物膜工艺在传统AAO工艺升级改造中的潜力.  相似文献   

16.
采用外循环序批式反应器(ECSBR),通过向反应器中分阶段投加硫化物,成功抑制体系中亚硝酸氧化菌(NOB)的活性,实现了城市污水单级短程硝化/厌氧氨氧化自养生物脱氮,出水氨氮为3.78 mg·L-1,氨氮去除率为88.4%,氮去除负荷为66.8 g·m-3·d-1.在投加硫化物前,系统氮转化途径以全程硝化为主,出水硝酸盐为13 ~22 mg·L-1,生成硝态氮与去除氨氮比值>0.9.在投加硫化物后,NOB的活性受到了抑制,出水硝酸盐降为4.18 mg·L-1,生成硝酸盐与去除氨氮比值平均为0.17.体系中大量的氮以氮气的形式被去除,占进水氮的65.4%.氮转化途径由全程硝化向短程硝化/厌氧氨氧化耦合脱氮转化.研究还表明,硫化物对于体系NOB的抑制是可逆的,停止投加硫化物后,NOB的活性又重新恢复.因此,分阶段投加硫化物能保证反应过程中对NOB的持续抑制作用,为实现单级自养脱氮工艺的快速启动和稳定维持提供了一种新的策略.  相似文献   

17.
A/O生物法处理石化废水的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了处理水质组成复杂,毒性大、有机物浓度较高的石化废水,采用先厌氧后好氧(即A/O生物法)的处理方法。研究结果表明,石化废水经厌氧处理后,其好氧可生化性提高20%~40%;当厌氧反应器进水有机负荷为5.2kgCOD/m3·d,水力停留时间为24h时,BOD5去除率为85%,COD去除率为83%,油去除率为91.1%;当曝气池污泥负荷为0.45kgCOD/kgMLSS·d,水力停留时间为4h时,BOD5去除率为94.1%,COD去除率为92.7%,油去除率为96.3%。系统COD总去除率为85%~96%,BOD5总去除率为95%~99%。A/O生物法为石化废水处理提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号