首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
为探究干湿交替条件下,农田土壤CO2排放对生物炭添加的响应特征及其影响因素,通过室外土柱模拟试验,在灰漠土中添加不同粒径棉花秸秆生物炭(<0.25 mm, M1; 0.25~1 mm, M2; 1~5 mm, M3;>5 mm, M4)和葡萄藤生物炭(<0.25 mm, P1; 0.25~1 mm, P2; 1~5 mm,P3;>5 mm, P4),研究干湿交替下生物炭的类型、粒径对土壤CO2排放特征的影响.结果表明,添加生物炭改变了土壤CO2排放速率,土壤CO2累积排放量随棉花秸秆生物炭粒径的增加而降低,不同生物炭类型对土壤CO2排放速率的影响存在极显著差异(p <0.001).在湿润阶段,棉花秸秆生物炭处理土壤CO2累积排放量为20.67~28.26 g·m-2·d-1,与其相比,同一粒径下葡萄藤生物炭处理土壤CO2累积排放量显著降低,降低了13.18%~28.83%;在干旱阶段,与对照处理相比,葡萄藤生物炭处理下土壤CO...  相似文献   

2.
河口湿地具备不同于其他生态系统的典型的生物化学特征. 利用开路式涡度相关系统,对长江口崇西湿地净生态系统CO2交换(NEE)进行了初步研究. 结果表明,生长季CO2交换呈V字型特征,平均CO2交换量为-0.06 mg/(m2>/sup>·s);非生长季无明显特征,平均CO2交换量为0.025 mg/(m2>/sup>·s). 这与其他生态系统CO2交换特征相符合,主要是生长季的植被光合固碳作用所致. 非生长季的净生态系统CO2交换比生长季受土壤温度的影响更大. 大潮期和小潮期的CO2交换表明,无论是生长季还是非生长季,小潮期从生态系统释放到大气的CO2均高于大潮期,潮汐高度与CO2释放量呈负相关,暗示着高水位抑制生态系统呼吸和阻碍CO2的传输,从而减少了CO2的释放. 通过分析大潮期和小潮期的植被净光合速率发现,同一地点的植被固碳过程受潮汐的影响不很明显. 潮汐对净生态系统CO2交换的影响主要是减少了土壤呼吸释放CO2的过程. 总体而言,崇西湿地在年周期内表现为CO2的汇.   相似文献   

3.
为了研究在饱和持水量条件下不同氮沉降形态和水平对森林土壤氮素净转化及土壤N2O排放的影响,选取中亚热带地带性森林红壤为研究对象,采用室内模拟试验方法,设置110%饱和持水量(WHC)的土壤水分,添加不同形态氮[(NH42SO4、NaNO3、NH4NO3]和不同含量[0 mg/kg(CK)、20.0 mg/kg(LN)、66.7 mg/kg(HN),以干土计]的氮素,进行为期14 d的室内培养(20℃).结果表明,与CK相比,(NH42SO4和NaNO3处理对土壤净氮矿化和氨化的影响不大,而(NH42SO4处理的净硝化量在高氮水平下为负值,说明硝化很弱,但该处理的净氨化量高于其他处理,特别是NaNO3处理的净氨化量较高,认为很可能存在NO3--N异化还原为铵(DNRA).NaNO3处理能显著提高土壤净硝化量而显著降低w(SON)(SON为土壤可溶性有机氮),NH4NO3处理同时降低了土壤w(NH4+-N)和w(NO3--N),表现为氮固定作用,并且高氮水平的土壤w(MBN)(MBN为微生物量氮)显著高于低氮水平;NaNO3和NH4NO3处理的土壤N2O排放速率和培养周期内的累积排放量均显著高于CK,并且高氮水平显著高于低氮水平,而(NH42SO4处理与CK相当,并且高氮水平下的N2O累积排放量低于低氮水平.研究显示,在过饱和土壤水分条件下,混合形态氮对土壤氮素净转化格局影响较大,含NO3-形态氮明显促进土壤N2O的排放,尤其是高氮水平.研究结果可为评价全球气候变化下特别是降雨情况下沉降氮形态对土壤氮素转化的影响提供重要参考.   相似文献   

4.
为探究土壤CO2浓度变化特征及其对岩溶碳循环的影响,于2018年6—12月对重庆市南川区后沟泉水化学及泉域上覆土壤CO2(监测点土地利用类型为玉米-油菜轮作地)进行为期7个月的连续监测和采样,并结合1—5月的监测数据,定量分析旱雨季土壤CO2浓度与岩溶碳汇量的季节性演变特征及二者的相互关联性. 结果表明:①土壤CO2浓度具有显著的季节性变化特征,主要表现为雨季较高、旱季较低,其最高值和最低值分别出现在9月(13 316 μmol/mol)和1月(2 262.63 μmol/mol). ②温度与土壤CO2浓度之间存在较强的正相关关系(R2=0.82,0.0012浓度之间不具相关性(R2=0.17,P>0.5),说明土壤CO2浓度主要受温度的影响. ③泉水Ca2++Mg2+、HCO3?浓度在雨季明显高于旱季,而水体CO2净消耗量在旱雨季无较大差异,这可能是由于受土壤CO2效应、降水稀释效应和H2SO4/HNO3释放CO2的共同影响. 研究显示,土壤CO2浓度的变化特征表现为季节性差异,但在土壤CO2浓度及外部环境的多重影响下,岩溶碳循环的季节性变化并不明显.   相似文献   

5.
微塑料污染和蚯蚓活动对黄棕壤温室气体排放的影响   总被引:1,自引:0,他引:1  
为明确蚯蚓暴露于不同量聚丙烯(PP)微塑料后对土壤CO2、N2O排放的影响,采用湖北当阳橘园土壤,进行室内培养试验,设置了5个处理:对照(CK)、接种蚯蚓(E)、接种蚯蚓并添加低量聚丙烯(0.25%干土重m/m,M1+E)、接种蚯蚓并添加中量聚丙烯(2%干土重m/m,M2+E)和接种蚯蚓并添加高量聚丙烯(7%干土重m/m,M3+E).结果表明:接种蚯蚓可以显著增加土壤CO2、N2O的排放,相比未接种蚯蚓(CK)处理,土壤的CO2、N2O累积排放量分别增加了4.17、1.79倍,且接种蚯蚓显著提高了土壤p H.而微塑料添加后显著降低了土壤CO2、N2O排放,其中,接种蚯蚓并添加高量微塑料对土壤的CO2、N2O排放抑制效果最明显,分别降低了16.99%、27.28%.微塑料的添加会显著降低蚯蚓生物量,低、中、高量微塑料处理下蚯蚓生物量损失值较仅接种蚯蚓增加了29%、48%、...  相似文献   

6.
为研究油田开发过程中原油在大气条件下的碳排放特征,完善油气系统潜在温室气体排放清单,以胜利油田典型区块——胜坨油田原油为研究对象,通过改进的静态室-气相色谱及质谱法对原油在大气条件下的自然脱气(排放)过程进行模拟试验研究. 结果表明:CH4和CO2是胜坨油田原油溶解气中的两种主要温室气体;将模拟时间(48 h)均分为4个时段,CH4、CO2的主要排放阶段为0~12 h,并且其排放量远高于>12~24、>24~36和>36~48 h,其中,不同温度下CH4、CO2的最大排放率均出现在0~2 h. 原油在空气中暴露时间的长短及所处大气温度的高低直接影响温室气体的累积排放,CH4、CO2的累积排放量均随模拟试验的进行而递增;原油所处环境温度越高,累积排放量越大,3 ℃时CH4、CO2的累积排放量分别为12.498、15.071 g/m3,13 ℃时为20.626、21.004 g/m3,27 ℃时为31.353、26.954 g/m3. CH4、CO2在不同温度下的相对排放量存在差异,表现为低温(3、13 ℃)条件下CH4排放量低于CO2,相对高温(27 ℃)条件下表现相反. 研究显示,原油所处大气环境的温度及暴露时间是影响原油温室气体排放的重要因素.   相似文献   

7.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   

8.
人为活动导致大气氮和硫沉降的增加及其随后产生的诸多不良生态效应。定量农田大气氮和硫沉降输入可以为农田氮硫的养分管理提供参考依据。近年来,国家大气清洁行动对大气活性氮和硫的排放产生了较大影响,然而关于华北农区氮和硫的综合沉降研究并不多见。该研究在河南省北部农区采集大气NH3、NO2和SO2浓度,研究大气PM2.5中PNO3-、PNH4+和PSO42-浓度的季节变异,定量大气氮和硫干沉降量。采集大气降雨获得大气氮和硫湿沉降量。结果表明:2020年试验点大气NH3、NO2和SO2月平均浓度分别为13.9μg/m3(以N计,下同)、10.38μg/m3和4.1μg/m3(以S计,下同)。大气PM2.5浓度61.3~110.8μ...  相似文献   

9.
选择南通协兴港附近裸露潮滩,使用便携式土壤通量测量系统开展潮间带湿地CO2通量监测,研究无植被覆盖条件下潮间带碳通量特征及其影响因素的关系.实验结果表明,各潮滩CO2固定水平表现为高潮带 < 中潮带 < 低潮带.低潮带叶绿素a含量较高,对CO2的吸收能力较强,而高潮带有机碳含量高,微生物呼吸作用释放的CO2通量较高,研究区整体上表现为对CO2净吸收.此外,CO2净固定通量随土壤有机碳含量和落潮时间增加而下降,与土壤叶绿素a含量和地下水位关系密切.研究成果对于明确人类活动对江苏沿海潮间带裸露光滩碳循环的影响具有重要意义.  相似文献   

10.
以花卉三角梅修复Cd和佳乐麝香污染土壤为研究对象,探讨大气CO2浓度升高对该植物吸收Cd和佳乐麝香的影响,并通过检测植物根际各相关指标综合分析三角梅修复生态系统的整体功能.结果表明,CO2浓度升高、Cd和佳乐麝香的联合胁迫对三角梅生长没有显著抑制,对其吸收Cd和佳乐麝香具有促进作用,尤其是750μL/LCO2、50mg/kg Cd和佳乐麝香处理促进作用最显著,并且,此时三角梅根际细菌的数量最多.脲酶活性随不同处理组浓度变化存在显著性差异.佳乐麝香的添加和CO2浓度升高促进了土壤有机碳的增加.综上,三角梅具有应用于大气CO2浓度升高条件下修复Cd和佳乐麝香复合污染土壤的潜力.  相似文献   

11.
崇明东滩芦苇湿地温室气体排放通量及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
通过静态箱-气相色谱法对崇明东滩芦苇群落在生长周期内的3种温室气体——CH4、N2O和CO2的排放、吸收特征进行研究. 结果表明:芦苇群落湿地CH4排放通量受温度影响较大,夏季排放通量明显高于其他季节,年均排放通量为74.46μg/(m2·h);N2O年均排放通量为2.22μg/(m2·h),冬季排放通量最大;CO2的吸收率季节变化明显,年均排放通量为-101.93mg/(m2·h). 温度、芦苇植株光合作用及呼吸作用是影响CH4产生和排放的主要因素;而沉积物氮素不足和限制,则是促使芦苇群落表现出对N2O吸收的原因;芦苇的光合作用及土壤呼吸作用随温度和季节的变化是控制芦苇湿地CO2的排放和吸收的主要因素. 芦苇植株发达的通气组织是CH4和N2O由大气向沉积物扩散的通道,同时分子扩散过程也是沉积物产生的CH4、N2O和CO2扩散到大气中的途径和方式.   相似文献   

12.
以同时模拟未来大气CO2浓度和温度升高的田间开放式气候变化平台为依托,研究CO2浓度升高(CE)、升温(WA)以及两者同时升高(CW)对麦田土壤基础呼吸和微生物丰度、群落结构的影响.结果表明:CE对土壤基础呼吸没有影响,但是WA显著提高了土壤基础呼吸,在抽穗和成熟期分别增加了51.6%和38.5%.在分蘖期,土壤细菌和真菌丰度没有显著变化;而在抽穗和成熟期,CW和WA处理显著降低了真菌丰度,降低幅度分别达到32.1%~50.2%和32.0%~37.4%.通过对T-RFLP数据分析发现,CE、CW和WA处理对麦田土壤真菌和细菌群落结构没有显著影响,但是在一定程度上改变了古菌群落结构.与对照相比,CE处理真菌多样性提高了7.1%~8.2%,CW和WA处理真菌多样性分别降低了5.3%~13.5%和22.1%~33.6%;在分蘖和抽穗期,CE、CW和WA处理土壤细菌多样性比对照显著提高.  相似文献   

13.
为了揭示干旱半干旱区高寒湿地不同水分梯度对土壤呼吸规律的影响,以及土壤温度与含水量对土壤呼吸影响的差异性,以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,在2014年植物生长季利用LI-8100土壤碳通量自动测量系统对不同水分条件(常年积水区、季节性积水区、常年干燥区)下的土壤呼吸速率进行测定,分析土壤呼吸日变化、季节性变化特征及其与土壤温度、土壤体积含水量的关系. 结果表明:①不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤呼吸速率日变化均呈明显的单峰曲线,常年积水区、季节性积水区、常年干燥区土壤呼吸速率最大值分别为1.97、7.39、8.83 μmol/(m2·s),均出现在13:00—15:00;土壤CO2日累积排放量季节性变化明显,差异性达到极显著水平(P<0.01),三者的最大值分别为0.12、0.45、0.40 mol/m2,地表积水显著抑制了土壤呼吸,提高了土壤碳稳定性. ②不同水分条件下土壤呼吸速率与土壤温度、土壤体积含水量之间均呈极显著正相关(P<0.01),常年积水区、季节性积水区和常年干燥区的Q10(土壤呼吸温度敏感性)差异性极显著(P<0.01),其大小表现为常年干燥区(1.54)<常年积水区(2.22)<季节性积水区(3.36),各水分区域6月典型日的Q10最大,表现为常年干燥区(2.56)<季节性积水区(4.30)<常年积水区(4.75),说明水分条件显著影响Q10. ③巴音布鲁克天鹅湖高寒湿地土壤呼吸受地下5 cm处土壤温度(T)与0~5 cm土壤体积含水量(W)的综合影响,季节性积水区土壤呼吸速率与二者之间满足最佳拟合模型Rs=-1.113+0.041W-0.366T+0.008WT,常年干燥区则满足最佳拟合模型Rs=1.470+0.023W-0.027T+0.002WT.   相似文献   

14.
森林土壤是大气CO2重要的排放源。施肥、采伐、火烧、林下植被管理和土地利用方式改变等人为措施改变了土壤理化性质和土壤微气候,显著影响森林土壤CO2的产生与排放。人为干扰对森林土壤呼吸的影响已积累了丰富的研究结果,但因森林类型、土壤状况、地域差异以及气候因素的不同,即使同一种干扰因素对土壤呼吸的影响也存在促进、降低或者未改变等不同的结论。论文利用相关论文数据库查询森林土壤呼吸的文献,在简要分析影响森林土壤呼吸自然因素(土壤温度、含水量)的基础上,重点论述了施肥、采伐、火烧、林下植被管理以及土地利用方式改变等人为因素对森林土壤呼吸的影响,系统揭示了人为干扰对森林土壤呼吸影响的作用机制,并探讨今后需要加强的研究方向,以期为气候变化背景下我国林地的合理、可持续经营起到借鉴和启示的作用。  相似文献   

15.
为揭示河口区陆基养虾塘从养殖期到非养殖期一年间的CO2通量变化,以福建省闽江河口鳝鱼滩陆基养虾塘为研究对象,于2016年5月-2017年3月采用悬浮箱/静态箱-气相色谱法对养虾塘养殖期水-大气界面和非养殖期沉积物-大气界面白天CO2垂直通量进行原位观测.结果表明:①养虾塘在整个研究期间CO2通量变化范围为-62.87~162.81 mg/(m2·h),平均值为(42.66±18.12)mg/(m2·h),总体上表现为大气CO2的释放源,且呈非养殖期CO2通量平均值[(78.51±16.61)mg/(m2·h)]显著高于养殖期[(17.98±18.26)mg/(m2·h)]的特征.②养殖期间,养虾塘CO2通量呈"排放-吸收"交替变化的特征,而非养殖期养虾塘一直是大气CO2的净排放源.③养虾塘养殖期CO2通量时间变化特征主要受到ρ(DOC)(DOC为总溶解有机碳)、ρ(SO42-)、ρ(Cl-)、盐度、pH、ρ(Chla)(Chla为叶绿素a)的影响,其中,pH和ρ(SO42-)是其主要影响因子,而ρ(TDN)(TDN为总溶解氮)、ρ(TDP)(TDP为总溶解磷)、ρ(SO42-)对非养殖期CO2通量时间变化影响较大.研究显示,滨海陆基养殖塘是大气CO2的重要来源,其排放通量多低于河流、水库等水生生态系统,但高于湖泊生态系统;养殖塘CO2通量受人为影响明显,其较高的变异性与养殖生物、饲料投放以及浮游藻类有关.   相似文献   

16.
氮沉降在很大程度上会对土壤呼吸产生扰动,进而影响到生态系统碳收支.以我国亚热带湿地松人工林为研究对象,通过定位模拟氮沉降控制试验,定量研究根系呼吸和微生物呼吸对氮添加的响应差异,并通过土壤环境的同步监测,初步探讨影响上述过程的生物地球化学与微生物学机理.结果表明:不同氮素添加水平下土壤呼吸速率及其组分总体上都呈现出单峰曲线特征,峰值出现在7月或8月,氮添加对土壤呼吸的季节模式没有明显影响.CK(0,对照)、LN〔60 kg/(hm2·a),低氮〕和HN〔120 kg/(hm2·a),高氮〕处理下土壤总呼吸速率的年均值分别为3.91、2.30和1.73 μmol/(m2·s),各组根系呼吸速率年均值分别为1.41、0.87和0.66 μmol/(m2·s),各组微生物呼吸速率年均值分别为2.50、1.44和1.07 μmol/(m2·s).施氮后土壤总呼吸及其组分都受到明显抑制,并且随着施氮水平的提高,土壤总呼吸及其组分明显减小.与对照样地微生物呼吸占比65.2%相比,低氮和高氮处理下微生物呼吸占比显著降低,降幅分别为62.6%和62.1%,说明氮素添加对微生物呼吸的抑制作用大于根系呼吸.施氮后一年,氮素输入对土壤呼吸的抑制在消退.施氮对表层土壤w(TOC)(TOC为总有机碳)、w(NH4+)、w(NO3-)、w(DOC)(DOC为可溶性有机碳)、w(DON)(DON为可溶性有机氮)、w(MBC)(MBC为微生物生物量碳)和w(MBN)(MBN为微生物生物量氮)都没有显著影响.氮素添加主要是通过降低土壤pH、加速湿地松人工林土壤酸化,对影响土壤有机质转化的土壤脲酶和蔗糖酶活性产生显著抑制,从而影响到土壤微生物活性,导致土壤微生物呼吸降低,这可能是土壤呼吸对氮添加响应的关键机制.   相似文献   

17.
不同氮水平下秸秆和酚类、有机酸对土壤碳含量的影响   总被引:1,自引:1,他引:0  
利用采集自FACE(Free Air Carbon Dioxide Enrichment)技术平台上田间培养的土壤样品,通过温室培养的方法,研究不同CO2浓度下导致作物生物量增加和更多酚类、有机酸输入对土壤碳含量的影响. 结果表明,CO2浓度升高时,通过根系分泌的酚类、有机酸对土壤各粒级分配的影响受秸秆加入和氮水平的调控. 在有无秸秆加入条件下,酚类、有机酸的加入主要增加了粒径>250和<53 μm土壤的碳含量. 单位土壤各粒级的碳含量均增加,粒径>53 μm增加幅度较大;在没有秸秆加入的常规氮水平与有秸秆加入的低氮水平下,碳含量变化幅度较大. 表明来自高CO2浓度条件下秸秆和酚类、有机酸对土壤碳的固定具有重要的作用和意义.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号