首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

2.
Haloacetic acids (HAAs) and trihalomethanes (THMs) were generated in bench-scale chlorination experiments using treated waters (prior to final chlorination) of the three major drinking water utilities of the Quebec City area. The purpose was to investigate the formation and occurrence of these chlorination by-products (CBPs) on a seasonal basis. Data for HAAs, THMs and other physico-chemical parameters were produced through a six-month sampling program with variable conditions of water quality, water temperature, applied chlorine dose and reaction time. In waters from the three utilities, chloroform (THM specie), dichloroacetic and trichloroacetic acid (HAA species) were the most prevalent compounds due to the low concentrations of bromide in the utilities' raw waters. Significant differences in CBP occurrence were noted between the three utilities' chlorinated waters, mainly due to the type of disinfectant applied to raw water. The use of pre-ozonation, as opposed to pre-chlorination (or direct chlorination) in one of the utilities appears to be the major factor contributing to that utility's potential for compliance with current THM and future HAA standards. Seasonal variations in THMs and HAAs were mainly associated with variations in organic precursors and to changes in water temperature (two parameters which vary widely on a seasonal basis in surface waters of southern Quebec), with CBP occurrence at its highest in spring. Statistical correlations between HAAs and THMs were moderate and only temperature appeared to affect the preponderance of one CBP or the other. Finally, a regression analysis was carried out aimed at associating each CBP to water quality and the experimental parameters. Thanks to their predictive ability, multivariate models seem to be the tools with the best potential for decision-making purposes.  相似文献   

3.
以天津市某给水厂的水源水为实验对象,通过在实验室规模上模拟的给水处理厂工艺流程,比较了3种不同工艺流程中各单元出水的三卤甲烷(THMs)、卤乙酸(HAAs)和总有机物(TOC)浓度变化,分析了水处理单元工艺和TOC浓度对消毒副产物的影响。结果表明,预氯化生成的三卤甲烷和卤乙酸分别占最终出水中三卤甲烷和卤乙酸浓度的55.7%和66.7%,说明预氯化对出厂水中消毒副产物的产生有显著影响;混凝沉淀和过滤对三卤甲烷的去除率分别为17.2%和19.6%,而卤乙酸在水处理过程中变化不大,仅在过滤之后降低了3.32μg/L,说明过滤对三卤甲烷和卤乙酸均有一定的去除作用,而混凝沉淀仅对三卤甲烷有一定的去除作用;TOC浓度经过水处理工艺后整体呈下降趋势,但分析表明,其浓度对三卤甲烷和卤乙酸的生成影响很小,而氯则是三卤甲烷和卤乙酸生成的重要限制因素。  相似文献   

4.
Trihalomethanes (THMs) are potential carcinogens formed from the reaction of the disinfectant chlorine with organic matter in the source water. This study of Kansas drinking water supply lakes evaluates the relationship among THM formation potential (THMFP), organic carbon and lake trophic state (LTS). THMFP was positively correlated to organic carbon. Total THMFP and total organic carbon were positively correlated to LTS, an estimator of lake enrichment, when very turbid lakes were omitted. These very turbid lakes (due to high suspended solids concentrations) had higher than expected THMFP, based on LTS, and higher organic carbon concentrations. THM data measured in the treated drinking water were positively correlated to THMFP, total organic carbon and LTS. The levels of organic carbon that contribute to THMs are a result of lake and watershed factors related to increasing levels of enrichment and suspended sediments. These factors are controllable by appropriate management practices.  相似文献   

5.
以南方某市具有代表性的7个自来水厂为研究对象,对不同季节和不同处理工艺下的原水、出厂水和管网水的9个常规水质参数和2类含碳消毒副产物进行了检测,考察了水质指标随季节的变化规律和处理工艺对不同水质指标的影响,分析了常规水质参数与消毒副产物生成量之间的关系。结果表明:7个自来水厂出厂水均检出三卤甲烷(trihalomethanes,THMs)和卤乙酸(haloacetic acids,HAAs);THMs平均质量浓度为8.70~29.35 μg·L−1,HAAs平均质量浓度为13.22~39.06 μg·L−1;管网水中2类消毒副产物浓度水平较出厂水略有增加;THMs的季节变化规律为冬季>春季≈秋季>夏季,HAAs的季节变化性不强。利用IBM SPSS Statistics 20进行了Spearman秩相关系数分析,并分别以原水和出厂水水质参数来建立出厂水THMs或HAAs生成量的回归方程。结果表明:THMs质量浓度预测效果良好,可用于自来水厂水质的化学安全性预警;但对于HAAs质量浓度预测,无论采用原水还是出厂水水质参数所建立的预测方程,预测结果均不理想。  相似文献   

6.
Water chlorination results in formation of a variety of organic compounds, known as chlorination by-products (CBPs), mainly trihalomethanes (THMs) and haloacetic acids (HAAs). Factors affecting their concentrations have been found to be organic matter content of water, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with river waters from Lesvos island, Greece, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, time and chlorine dose. The determination of CBPs was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total trihalomethanes and total HAAs based on the use of pH, reaction time and chlorine dose. The developed models, although providing satisfactory estimations of the concentrations of the CBPs, showed lower correlation coefficients than the multiple regression models developed for THMs only during previous study. It seems that the different water quality characteristics of the two river waters in the present study is responsible for this phenomenon. The results indicate that under these conditions the formation of THMs and HAAs in water has a more stochastic character, which is difficult to be described by the conventional regression techniques.  相似文献   

7.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   

8.
通过调研北方某大型城市多水源供水格局下管网水中三卤甲烷(THMs)和卤乙酸(HAAs)这2类消毒副产物(DBPs)的质量浓度水平,对管网中各类DBPs的超标风险、风险点的时空分布及影响因素进行了分析,从确定管网指示性DBPs、检测频率及管网采样点布设3个方面提出了关于管网DBPs风险分析方法的建议.研究结果表明,该市D...  相似文献   

9.
利用生物膜环状反应器模拟配水管网系统,将水厂砂滤池出水经过臭氧氧化后投加氯然后进入该模拟管网,另外把水厂砂滤池出水加氯后通入另一模拟管网作为对照实验。通过对两管网出水余氯、总铁、浊度、溶解性有机物(DOC)、以及消毒副产物三卤甲烷(THMs)、卤乙酸(HAAs)生成情况的测定,研究了饮用水臭氧处理对管网出水水质的影响。单因素方差分析结果表明,两管网出水的余氯、总铁、浊度以及THMs、HAAs含量相差不大,但DOC在臭氧氯管网中消耗较多。同时通过高效凝胶色谱(HPSEC), 红外光谱(FTIR)和三维荧光光谱(EEM)表征了不同管网进出水DOC变化,结果表明,臭氧氧化后的管网出水中溶解性有机物荧光光谱中三区富里酸和五区腐植酸荧光峰值(ФⅢ+Ⅴ,n)减小较多,管网出水消毒副产物稍有增加。  相似文献   

10.
The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.  相似文献   

11.
This study aims to investigate the influence of the coexistence of halogen ions (bromide/iodide) and biological source matters on the speciation and yield of trihalomethanes (THMs), haloacetic acids (HAAs), and N-nitrosodimethylamine (NDMA) during the ozonation and subsequent chlorination of water. The results show that the concentrations of brominated THMs and iodinated THMs increased with increasing bromide and iodide concentration. These results may be attributed to the higher reactivity of hypobromous acid and hypoiodous acid generated from the ozonation and subsequent chlorination in the presence of bromide or iodide ions. The presence of bromide increased the species of brominated HAAs. There was a shift from chlorinated HAAs to brominated HAAs after increasing the concentration of bromide. The effect of iodide on HAA formation was more complex than bromide. For most samples, the concentration of total HAAs (T-HAAs) increased to the maximum and then decreased with increasing iodide concentration. The components of the organic precursors also significantly influenced the formation of brominated and iodinated disinfection by-products (Br-DBPs and I-DBPs). Humic acids produced more CHBr3 (596.60 μg/L) than other organic materials. Microcystis aeruginosa cells produced the most tribromoacetic acid (TBAA, 84.16 μg/L). Furthermore, the yield of NDMA decreased with increasing bromide concentration, indicating that the formation of NDMA was inhibited by the high concentration of bromide.  相似文献   

12.
Trihalomethanes (THMs) are halogenated hydrocarbons, and are by-products of the chlorination of drinking water. Most THMs are formed in drinking water when chlorine reacts with naturally occurring organic substances such as decomposing plant and animal materials. Risks for certain types of cancer are now being correlated with the presence of disinfection by-products (DBPs). The present research uses gas chromatography to analyze the presence and levels of THMs in drinking water samples from a variety of sources. These include (1) municipal drinking water from two south Florida counties; (2) two brands of bottled water; (3) untreated residential well water; and (4) municipal tap water passed through additional water purification systems. The results are summarized in a tabular format, and the compliance of each water with existing US EPA-mandated standards is examined. General conclusions from this study are that all the waters tested complied with federal regulations regarding THM levels, properly functioning home filtration units may be quite effective in further reducing DBP concentrations and, as expected, non-chlorinated waters such as bottled water and residential well water contain lower THM levels.  相似文献   

13.
Effects of bromide on the formation of THMs and HAAs   总被引:17,自引:0,他引:17  
Chang EE  Lin YP  Chiang PC 《Chemosphere》2001,43(8):1029-1034
The role of bromide in the formation and speciation of disinfection by-products (DBPs) during chlorination was investigated. The molar ratio of applied chlorine to bromide is an important factor in the formation and speciation of trihalomethanes (THMs) and halogenacetic acids (HAAs). A good relationship exists between the molar fractions of THMs and the bromide incorporation factor. The halogen substitution ability of HOBr and HOCl during the formation of THMs and HAAs can be determined based on probability theory. The formation of HAAs, and their respective concentrations, can also be estimated through use of the developed model.  相似文献   

14.
The fate of chlorine and organic materials in swimming pools   总被引:1,自引:0,他引:1  
Judd SJ  Bullock G 《Chemosphere》2003,51(9):869-879
The fate of organic nitrogen and carbon introduced into a swimming pool by pool users has been studied using a 2.2 m(3) model pool. The study made use of a body fluid analogue (BFA), containing the primary endogenous organic amino compounds, and a soiling analogue represented by humic acid (HA). The system was used to examine the effect of organic loading and organic carbon (OC) sources (i.e. amino or HA) on the levels and speciation of the key chlorinated disinfection by-products of trihalomethanes (THMs) and chloramines under operating conditions representative of those employed on a full-scale pool.Results revealed OC, chloramines and THMs to all attain steady-state levels after 200-500 h of operation, reflecting mineralisation of the dosed OC. Steady-state levels of OC were roughly linearly dependent on dose rate over the range of operational conditions investigated and, as with the chloramine levels recorded, were in reasonable agreement with those reported for full-scale pools. THM levels recorded were somewhat lower than those found in real pools, and were dependent on both on pH carbon source: the THM formation propensity for the soling analogue was around eight times than of the BFA. Of the assayed by-products, only nitrate was found to accumulate, accounting for 4-28% of the dosed amino nitrogen. Contrary to previous postulations based on the application of Henry's Law, only insignificant amounts of the volatile by-products were found to be lost to the atmosphere.  相似文献   

15.
Formation of nitrogenous disinfection by-products from pre-chloramination   总被引:5,自引:0,他引:5  
Chu WH  Gao NY  Deng Y  Templeton MR  Yin DQ 《Chemosphere》2011,85(7):1187-1191
A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 μg L−1 in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern.  相似文献   

16.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

17.
为了考察UV/H2O2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H2O2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S rRNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H2O2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H2O2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H2O2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制, 该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H2O2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。  相似文献   

18.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

19.
The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many countries, and the non-regulated haloacetic acids (HAAs) and haloacetonitriles (HANs) were investigated at 6.0≤pH≤8.0, under controlled chlorination conditions. The investigated particles were collected from a hot tub with a drum micro filter. In two series of experiments with either constant initial active or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from the particles was higher than previously reported for body fluid analogue and filling water. The genotoxicity and cytotoxicity estimated from formation of DBPs from the treated particle suspension increased with decreasing pH. Among the quantified DBP groups the HANs were responsible for the majority of the toxicity from the measured DBPs.  相似文献   

20.
Photodegradation of haloacetic acids in water   总被引:9,自引:0,他引:9  
The global distribution and high stability of some haloacetic acids (HAAs) has prompted concern that they will tend to accumulate in surface waters and pose threats to humans and the ecosystem. It is important to study the degradation pathways of HAAs in aqueous systems to understand their ecotoxicological effects. Previous studies involving thermal degradation reactions show relatively long lifetimes for HAAs in the natural environment. Photolysis and photocatalytic dissociation are potentially efficient routes for the degradation of HAAs such as trichloroacetic acid to hydrochloric acid, carbon dioxide and chloroform, although such processes are poorly understood in surface waters. In our present study, we have used light to degrade the HAAs in the presence of titanium dioxide suspensions. All chloro and bromo HAAs degrade in photocatalysis experiments and the rate of degradation is directly proportional to the number of halogen atoms in the acid molecule. The half-lives of the HAAs from the photodegradation at 15 degrees C in the presence of suspended titanium dioxide photocatalyst are 8, 14, 83 days for the tri-, di- and mono-bromoacetic acids. Tri-, di- and mono-chloroacectic acids have half-lives of 6, 10 and 42 days respectively. The mixed bromochloro and chlorodifluoroacetic acids degrade with half-lives of 18 and 42 days respectively. Our results therefore suggest that the photocatalytic process can provide an additional degradation pathway for the HAAs in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号