首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.  相似文献   

2.
Several solid-state 13C nuclear magnetic resonance (NMR) techniques were used to characterize soil organic matter spiked with 13C-labeled organic compounds spanning a range of hydrophobicities (benzoic acid, benzophenone, naphthalene, phenanthrene, and palmitic acid). The chemical shifts of NMR resonances of the sorbed species were shifted by up to 3 ppm relative to those of the neat compounds. Sorption also resulted in increased resonance linewidth for the compounds containing a single 13C label, indicating the presence of a range of different chemical environments at the sites of sorption. On the other hand, sorption decreased the linewidth of the resonance of naphthalene, which was uniformly 13C-labeled. This was attributed to the removal of intermolecular 13C-13C dipolar coupling. Heterogeneity of the organic matter was demonstrated using the spectral editing technique proton spin relaxation editing (PSRE), which enabled the identification and quantification of charcoal-rich domains characterized by rapid rates of proton spin-lattice relaxation in the static frame (T1H), and humic domains characterized by slow rates of T1H relaxation. Furthermore it was demonstrated that the sorbed 13C-labeled molecules "inherit" the T1H "signature" of the organic matrix in their immediate vicinity. Thus PSRE on the spiked soils enabled evaluation of the relative affinity of the two domain types for the sorbate molecules. The charcoal-rich domains were shown to have a twofold to tenfold greater affinity for the organic compounds, with greater differences found for the more hydrophobic compounds.  相似文献   

3.
Two novel solid-state 13C nuclear magnetic resonance (NMR) spectroscopic techniques, PSRE (proton spin relaxation editing) and RESTORE [Restoration of Spectra via T(CH) and T(1rho)H (T One Rho H) Editing], were used to provide detailed chemical characterization of the organic matter from six Australian sewage sludges. These methods were used to probe the submicrometer heterogeneity of sludge organic matter, and identify and quantify spatially distinct components. Analysis of the T1H relaxation behavior of the sludges indicated that each sludge contained two types of organic domains. Carbon-13 PSRE NMR subspectra were generated to determine the chemical nature of these domains. The rapidly relaxing component of each sludge was rich in protein and alkyl carbon, and was identified as dead bacterial material. The slowly relaxing component of each sludge was rich in carbohydrate and lignin structures, and was identified as partly degraded plant material. The bacterial domains were shown, using the RESTORE technique, to also have characteristically rapid T(1rho)H relaxation rates. This rapid T(1rho)H relaxation was identified as the main cause of underrepresentation of these domains in standard 13C cross polarization (CP) NMR spectra of sludges. The heterogeneous nature of sewage sludge organic matter has implications for land application of sewage sludge, since the two components are likely to have different capacities for sorbing organic and inorganic toxicants present in sewage sludge, and will decompose at different rates.  相似文献   

4.
This work shows the applicability of two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) nuclear magnetic resonance (NMR) spectroscopy to the characterization of whole soils. A combination of different mixing times and cross polarization (CP) methods, namely Lee-Goldberg (LG)-CP and Ramp-CP are shown to afford, for the first time, intra- and inter- molecular connectivities, allowing for molecular assemblage information to be obtained on a whole soil. Our results show that, for the brackish marsh histosol under study, two isolated domains could be detected. The first domain consists of O-alkyl and aromatic moieties (lignocellulose material), while the second domain is comprised of alkyl type moieties (cuticular material). The role of these domains is discussed in terms of hydrophobic organic compound sorption within soil organic matter (SOM), including the possible effects of wetting and drying cycles.  相似文献   

5.
Use of solid-state 13C nuclear magnetic resonance (NMR) spectroscopy has become commonplace in studies of humic substances in soils and sediments, but when modern high-field spectrometers are employed, care must be taken to ensure that the data obtained accurately reflect the chemical composition of these complex materials in environmental systems. In an effort to evaluate the quality of solid-state 13C NMR spectra obtained with modern high-field spectrometers, we conducted a series of experiments to examine spectra of various humic acids taken under a variety of conditions. We evaluate conditions for obtaining semiquantitative cross polarization magic angle spinning (CPMAS) 13C NMR spectra of humic acids at high magnetic field and spinning frequency. We examine the cross polarization (CP) dynamics under both traditional and ramp CP conditions on Cedar Creek humic acid. Fitted equilibrium intensities from these CP dynamic studies compare to within 3.4% of the intensities determined from a Bloch decay spectrum of the same sample. With a 1-ms contact time, ramp CP and traditional CP spectra were acquired on this sample and were found to compare to within 5.4% of the Bloch decay spectrum; however, the signal-to-noise ratio per hour of data acquisition was found to double under ramp CP conditions. These results demonstrate the power of applying modern solid-state NMR techniques at high magnetic field strengths. With these techniques, high-quality, semiquantitative spectra can be quickly produced, allowing the application of solid-state NMR techniques to more environmentally relevant samples, especially those where the quantity is limited.  相似文献   

6.
Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes.  相似文献   

7.
Phasing out beehive burners and rising costs for landfilling have increased the need to widen options for utilization of the smaller size fractions of woody wastes generated during log handling and sawmilling in British Columbia. We characterized several size classes of logyard fines up to 16 mm sampled from coastal and interior operations. Total C, total N, ash, and condensed tannin concentrations were consistent with properties derived largely from wood, with varying proportions of bark and mixing with mineral soil. Especially for < 3-mm fractions, the latter resulted in high ash contents that would make them unsuitable for fuel. Solid-state 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra were consistent with the chemical data, with high O-alkyl intensity and similarity to naturally occurring woody forest floor; no samples were high in aromatic or phenolic C. Aqueous extracts of two < 16-mm fines, which accounted for only a small proportion of the total C, were enriched in alkyl C and had low or undetectable tannins. Application to forest sites might cause short-term immobilization of N, but also might include possible longer-term benefits from reduction of N loss after harvesting and restoration of soil organic matter in degraded sites.  相似文献   

8.
In many intensive agroecosystems continued inputs of phosphorus (P) over many years can significantly increase soil P concentrations and the risk of P loss to surface waters. For this study we used solid-state 31P nuclear magnetic resonance (NMR) spectroscopy, high-power decoupling with magic angle spinning (HPDec-MAS) NMR, and cross polarization with magic angle spinning (CP-MAS) NMR to determine the chemical nature of potentially mobile P associated with aluminum (Al) and calcium (Ca) in selected arable soils. Three soils with a range of bicarbonate-extractable Olsen P concentrations (40-102 mg P kg(-1)) were obtained from a long-term field experiment on continuous root crops at Rothamsted, UK, established in 1843 (sampled 1958). This soil has a threshold or change point at 59 mg Olsen P kg(-1), above which potentially mobile P (as determined by extraction with water or 0.01 M CaCl2) increases much more per unit increase in Olsen P than below this point. Results showed that CaCl2 and water preferentially extracted Al-P and Ca-P forms, respectively, from the soils. Comparison among the different soils also indicated that potentially mobile P above the threshold was largely present as a combination of soluble and loosely adsorbed (protonated-cross polarized) P forms largely associated with Ca, such as monetite (CaHPO4) and dicalcium phosphate dihydrate (CaHPO4-2H2O), and some Al-associated P as wavellite. The findings of this study demonstrate that solid-state NMR has the potential to provide accurate information on the chemical nature of soil P species and their potential mobility.  相似文献   

9.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

10.
Phosphorous (P)-31 nuclear magnetic resonance (NMR) spectroscopy is used in the analysis of P forms in extracts of soils and manures for environmental and agronomic purposes. Quantitative spectra require knowledge about spin-lattice relaxation times (T1) to ensure adequate delays between pulses. This paper determined T1 values of P forms in reconstituted (0.2 g in 0.7 mL(-1)) samples of freeze-dried 0.25 M NaOH plus 50 mM EDTA extracts of eight diverse soils (Aquept, Dystrochrept x 2, Hapludand, Rendoll, Udand, Haplostoll, and Orthod), three different manures (dairy cattle, deer, and sheep), and one epiphyte moss. Total concentrations in the reconstituted samples ranged from 5 to 175 mg Fe mL(-1), 2 to 62 mg Mn mL(-1), and 72 to 837 mg P mL(-1). Values of T1 for orthophosphate monoesters, orthophosphate diesters, and pyrophosphate varied from 0.42 to 1.69 s in soils and from 0.89 to 2.59 s in manures and the epiphyte. In contrast, T(1) for orthophosphate varied from 0.78 to 1.94 s in soils and 1.45 to 5.82 s in manures and the epiphyte. For quantitative 31P NMR, delay times should be three to five times the T1 value, translating to delays of 3 to 5 s for soils and up to 25 s for manures. If the required delay is too long then strategies such as adding paramagnetics could shorten T1, provided this does not increase line-broadening too much. A regression relationship was obtained between orthophosphate T1 values and the ratio of P concentration to Fe and Mn concentration on a w/v basis (r2= 0.97, P < 0.001), and between the T1 for all other compound classes and the ratio of P to Fe and Mn (r2= 0.70, P < 0.01). By combining measurement of Fe, Mn, and P in the reconstituted extract and these relationships, T1 can be estimated and the appropriate delay time used. If T1 is not considered and the delay time is too short, some peaks will be under- or over-represented and the relative distribution of P forms not quantitative.  相似文献   

11.
Molecular-level sorption behavior of monoaromatic compounds in suspensions of water-dispersable clay components was studied by measuring 2H nuclear magnetic resonance (NMR) spin-spin relaxation times (T2). In general, decreased T2 values indicate stronger solute-sorbent interactions and increased sorption of the solute. A decreasing trend for T2 values in the order benzene > fluorobenzene > toluene (-C6D5 moiety) was observed, which was probably caused by the hydrophobic effect. The T2 values for benzene and the -C6D5 moiety of toluene increased with increasing pH, whereas the trend with pH was much weaker and less consistent for fluorobenzene and the methyl group of toluene. Conversely, no clear relationship was found between T2 values and pH for dichloromethane. These contrasting results cannot be explained by the pH-dependent self-assembly and hydrophobicity of humics. Instead, directed specific forces, including hydrogen bonding, cation-pi interactions, and aromatic-aromatic interactions, are proposed between the benzene ring of monoaromatic solutes and soil organic matter (SOM). Substituents of benzene affect these interactions by varying the pi electron density. When the soil fraction was treated with NaOH to remove humic and fulvic acids, T2 values for the different monoaromatic solutes were surprisingly lower compared with those for the untreated soil fraction. This result is probably caused by the increased ratio of solutes adsorbed to "hard" or "glassy" SOM components, which leads to less mobile sorbed solute molecules, after removing NaOH-extractable humics that contain more "soft" or "rubbery" SOM components.  相似文献   

12.
Soil contaminated with 2,4,6-trinitrotoluene (TNT) and spiked with [14C]- and [15N3]-TNT was subjected to an anaerobic-aerobic soil slurry treatment and subsequently analyzed by radiocounting and solid-state 15N nuclear magnetic resonance (NMR) spectroscopy. This treatment led to a complete disappearance of extractable radioactivity originating from TNT and almost all of the radioactivity was recovered in the insoluble soil fraction. As revealed by solid-state 15N NMR, a major fraction of partially reduced metabolites of TNT was immobilized into the soil during the early stage of the anaerobic treatment, although some of the compounds (i.e., aminodinitrotoluenes and azoxy compounds) were extractable by methanol. Considerable 15N intensity was assigned to condensation products of TNT metabolites. A smaller signal indicated the formation of azoxy N. This signal and the signal for nitro groups were not observed at the end of the anaerobic phase, revealing further reduction and/or transformation of their corresponding compounds. An increase of the relative proportion of the condensation products occurred with increasing anaerobic incubation. Aerobic incubation resulted in a further decrease of aromatic amines, presumably due to oxidative transformations or their involvement in further condensation reactions. The results of the study demonstrate that the anaerobic-aerobic soil slurry treatment represents an efficient strategy for immobilizing reduced TNT in soils.  相似文献   

13.
The chemical forms of phosphorus in organic amendments are essential variables for proper management of these amendments for agro-environmental purposes. This study was performed to elucidate the forms of phosphorus in various organic amendments using state-of-the-art spectroscopic techniques. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF), and poultry (POULTRY) manures were subjected to sequential extraction. The extracts and residues after extraction were analyzed by solution (31)P nuclear magnetic resonance (NMR) and synchrotron-based P 1s X-ray absorption near-edge structure (XANES) spectroscopies, respectively. Most of the total P analyzed by inductively coupled plasma- optical emission spectroscopy in the sequential extracts of organic amendments was orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate from readily soluble calcium and some aluminum phosphates. In the poultry litter, Ca phytate was the main P species controlling P solubility. The recalcitrant fraction of BIO was mainly associated with Al and Fe. Those of HOG, DAIRY, and POULTRY were calcium phytate, which were identified only as organic species in the XANES spectra. The combination of the three techniques-sequential chemical extraction, solution (31)P NMR spectroscopy, and P 1s XANES-provided molecular characterization of P in organic amendments that would not have been possible with just one or a combination of any two of these techniques. Therefore, P speciation of organic amendments should use solid-phase and aqueous speciation techniques as deemed feasible.  相似文献   

14.
Magnetic cationic hydrogel (MCH) was synthesized, and its removal efficiency and mechanisms in regard to natural organic matter (NOM, represented by humic acid and fulvic acid) from the aqueous environment were studied. The effects of time, adsorbent dosage, initial pH, ionic strength, background ions, and NOM types were also investigated. MCH was characterized and found to have a strong magnetic character, yielding an extra advantage for recycling and reuse. Batch studies showed that the removal of Aldrich humic acid (AHA) by MCH was effective. The main mechanism for the removal of NOM is believed to be due to electrostatic interaction. NOM with larger molecular weight tended to be preferentially removed. Solutions with low pH, high ionic strength, and background electrolytes containing calcium, sulfate and bicarbonate were unfavorable for AHA removal. The adsorption-desorption of MCH was evaluated in three cycles, and demonstrated high regeneration rates.  相似文献   

15.
Development, characterization, and preliminary results of a recent technique capable of local measurements of pore-size distribution by a spatially resolved low resolution nuclear magnetic resonance (NMR) technique are described. Potential environmental uses include studying the change in pore-size distribution caused by surface compaction, which influences surface runoff, and obtaining information on the physical state of non-aqueous compounds in porous materials, which should aid the selection of appropriate soil remediation methods. Stray field (STRAFI) imaging is an NMR technique that allows distortion-free imaging of materials with short NMR relaxation times. The sample is placed in the strong axial fringe field gradient of a superconducting NMR magnet. We report on a new, unique, large 5-cm-diameter STRAFI probe, and its use for three preliminary test cases: water in ceramics of known pore size, paraffin wax and oil in sandstone rock, and water in soil at different matric potentials. The imaging is confined to one dimension with a spatial resolution of the order of 100 microm for protons. The optimum position for imaging occurs at 2.62 T and a gradient of 12.1 T/m. Water relaxation decay curves can be measured at any position in the 8-cm-long sample. These curves are decomposed into a series of terms each corresponding to a different pore size. Preliminary results show continuum fits to decay curves for a soil drained to three different matric potentials. Such information will be useful for interpreting water retention curves and will lead to understanding of the behavior of fluids in the vadose zone.  相似文献   

16.
Understanding pollutant sorption, bioremediation of these pollutants, and their interactions with humic substances requires knowledge of molecular-level processes. New developments with nuclear magnetic resonance (NMR) experiments and labeled compounds have improved the overall understanding of these mechanisms. The advancements made with two-dimensional NMR show great promise, as structural information and hydrogen-carbon bond connectivity can be discerned. This communication presents the application of improved two-dimensional NMR methods, the double quantum filtered (DQF) correlation spectroscopy (COSY) and echo/anti-echo heteronuclear single quantum coherence (HSQC) experiments, for use in structural studies of humic substances. Both experiments were found to produce significant improvements over the conventional COSY and heteronuclear multiple quantum coherence (HMQC) experiments that have been previously employed in similar studies. The more sensitive echo/anti-echo HSQC experiment produced more cross-peaks with higher resolution when compared with the HMQC spectra. The DQF-COSY significantly suppressed the diagonal signals and allowed numerous signals previously hidden in the standard COSY experiment to be observed. These improvements will aid current characterization strategies of humic substances from soils, sediments, and water and their subsequent reactions with pollutants and microorganisms.  相似文献   

17.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

18.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   

19.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   

20.
The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号