首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
农业残留物燃烧温室气体排放清单研究:以江苏省为例   总被引:7,自引:2,他引:7  
刘丽华  蒋静艳  宗良纲 《环境科学》2011,32(5):1242-1248
通过问卷调查确定了江苏省农业残留物在不同时间阶段(1990~1995、1996~2000、2001~2005和2006~2008年)作为生活燃料和田间直接燃烧的比例,利用燃烧炉模拟秸秆燃烧试验确定了6种农业残留物(水稻、小麦、玉米、油菜、棉花和大豆)燃烧产生的CO2、CO、CH4和N2O的排放因子;基于此,结合江苏省不...  相似文献   

2.
秸秆燃烧释放大量细小颗粒物(Fine Particulate Matter),对大气环境、生态系统和人类健康有重要影响.该研究基于2000-2014年中国华东地区农作物产量统计数据,估算各区域秸秆产量及室内外农作物秸秆燃烧总量.并运用排放因子法,估算15年间华东地区农作物秸秆燃烧PM2.5排放总量.研究结果表明,华东地区秸秆产量及燃烧总量分别为:2033.2 Mt和32678.59 Wt,PM2.5的排放总量为851.95 Wt.此外,PM2.5排放在时间和空间上不均衡.卫星火点监测数据显示,农田秸秆燃烧密集区域主要分布在山东南部、安徽北部、江苏和浙江东北部及上海市大部分地区;单位网格PM2.5最大的排放量多集中在山东、安徽北部、江苏中部和北部、浙江东北部和上海区域.时间序列上,山东、江苏和安徽呈显著增长趋势,上海、福建和浙江呈显著降低趋势.稻谷、小麦、玉米、豆类和油菜秸秆燃烧对污染物PM2.5的贡献率分别为32.45%、30.18%、18.95%、3.77%和14.65%.农作物秸秆燃烧释放PM2.5与工业粉尘的排放比变化趋势表明山东、安徽和江苏总体呈上升趋势;上海、福建和浙江总体保持平稳趋势.通过对华东地区农作物秸秆燃烧释放PM2.5的时空变化研究,为更好的揭示秸秆燃烧对区域环境的影响提供数据支持.  相似文献   

3.
收集玉米、水稻和小麦秸秆模拟露天燃烧排放的颗粒物,分析样品中碳质组分、水溶性离子(共9种)和无机元素(共17种),研究其排放因子及特征比值。结果表明:秸秆燃烧OC的排放因子远高于EC,二者范围分别为169~1 707和91~300 mg/kg。总水溶性离子排放因子范围为162~840 mg/kg。K~+、Na~+、NH_4~+和Cl~-是水溶性离子的主要组分,占水溶性离子总排放因子的80%~92%。K、Ca、P和Mg 4种生长元素排放因子之和占秸秆燃烧排放颗粒物中无机元素的98%~99%。Zn、Pb、Cu为秸秆燃烧排放颗粒物中排放因子较高的重金属元素,这些重金属对人体健康的影响不可忽视。此外,研究发现OC/EC可以用来区分秸秆燃烧与香烟燃烧、重型柴油车和草类燃烧源,K~+/OC可以用来区分秸秆燃烧与居民燃木取暖,K/Ca可以用来区分秸秆燃烧与交通污染源。  相似文献   

4.
滩涂围垦与开发是海岸带地区特有的土地利用模式,揭示新中国成立以来滩涂已开发围垦区土地利用类型结构能够为该地区未来土地利用与规划提供一个标尺。论文以江苏省如东县为例,从土地利用类型结构与土地利用类型综合指数两部分探讨新中国成立以来不同围垦年限滩涂围垦区土地利用类型结构变化特征,揭示土地利用变化过程,对该地区土地可持续利用具有重要意义。结果表明:新中国成立以来,如东县不同年限围垦区土地利用类型变化存在阶段性特征。从围垦时间序列来看,农用地占比在30 a 围垦区最高,其变化呈现“S”型特征;建设用地呈现间歇性增长,周期为20 a,其中村庄用地在围垦10 a 逐步出现;未利用地一直下降,在40 a 围垦区保持稳定,主要类型为河流用地。滩涂围垦区土地利用强度在30 a 围垦区达到最高,呈现“S”型变化特征。土地利用多样性指数在30 a 围垦区达到最高值,呈现倒“U”型特征。滩涂围垦区土地利用类型演变存在三个阶段。江苏省沿海滩涂淤长为滩涂围垦奠定了自然基础条件,围垦初期,受到盐分的限制,只有耐盐植物和改良作物能够在滩涂土壤上生存,随着土壤不断脱盐,滩涂围垦区土地利用类型逐步多样化,在未来滩涂资源开发利用过程中,需要重点开展滨海盐土的开发复垦工作,严格审批新增建设用地,积极保护自然生态环境,实现沿海滩涂地区可持续发展。  相似文献   

5.
长三角地区秸秆燃烧排放因子与颗粒物成分谱研究   总被引:14,自引:12,他引:14  
为获取长三角地区秸秆燃烧污染物排放因子及其颗粒物成分谱,利用自行设计开发的开放式燃烧源排放测试系统,选取小麦、水稻、油菜、豆秸和薪柴等5类典型作物秸秆,分别采用露天焚烧和炉灶燃烧2种燃烧方式,实测其气态污染物和颗粒物排放特征.结果表明,露天燃烧各类秸秆的CO、NOx和PM2.5平均排放因子约为28.7、1.2和2.65 g·kg-1,由于炉灶氧含量相对较低,燃烧不充分,其污染物排放因子总体高于露天燃烧,分别为81.9、2.1和8.5 g·kg-1.各类秸秆中,油菜的排放水平相对较高.含碳组分(OC和EC)是生物质秸秆燃烧产生PM2.5的主要组成,在露天燃烧中OC和EC的质量分数分别占(38.92±13.93)%和(5.66±1.54)%;炉灶燃烧中OC和EC分别为(26.37±10.14)%和(18.97±10.76)%.Cl-、K+等水溶性离子也有较大贡献,在露天燃烧中分别为(13.27±6.82)%和(12.41±3.02)%;在炉灶燃烧中分别为(16.25±9.34)%和(13.62±7.91)%.小麦、水稻、油菜和豆秸等作物秸秆露天燃烧排放颗粒物的K+/OC值分别为0.30、0.52、0.49和0.15,这些特征值可用于判断长三角区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.  相似文献   

6.
2021年,江苏省GDP净增量位居全国第一。经济社会快速发展的同时,全省大气环境也面临着诸多的问题。有9个市环境空气质量未达标、大气环境污染源复杂、多样,增加了大气环境污染治理的难度。文章根据《2021年江苏省生态环境状况公报》及相关部门公布的资料为依据,简要阐述了全省大气环境质量现状,并从移动源、工业污染治理、扬尘污染及环境监控等方面,分析了当前全省大气环境质量状况,并立足质量现状,提出了具有针对性的大气环境质量治理对策措施,具有积极的现实指导意义。  相似文献   

7.

为了解内蒙古自治区农作物秸秆露天焚烧烟气污染物排放情况,运用自主设计的生物质燃烧系统,以内蒙古地区典型农作物(葵花和玉米)秸秆作为研究对象进行室内模拟燃烧试验,通过比较不同地区秸秆燃烧释放CO、CO2、NOx、CxHy和PM2.5之间的差异,进行排放特性研究。结果表明:葵花秸秆CO、CO2、NOx、CxHy和PM2.5的排放因子分别为(344.71±66.36)、(1 147.73±229.01)、(3.20±0.62)、(138.48±28.22)和(0.97±0.20)g/kg,玉米秸秆的排放因子分别为(319.69±52.27)、(1 178.75±149.00)、(1.29±0.04)、(57.83±9.45)和(1.44±0.17)g/kg;不同地区农作物秸秆在明燃和阴燃条件下PM2.5排放因子分别为(0.23±0.11)~(3.26±0.16)和(0.53±0.35)~(2.91±1.69) g/kg,CO排放因子分别为(162.66±15.94)~(381.65±81.74)和(235.29±34.43)~(569.80±165.72)g/kg,CO2排放因子分别为(1 094.96±182.04)~(1 866.22±377.83)和(725.10±107.71)~(1 409.43±82.32) g/kg,除CO2排放因子表现为明燃大于阴燃外,其他污染物排放因子均表现为阴燃大于明燃。

  相似文献   

8.
武汉市秸秆燃烧VOCs排放估算及管理对策   总被引:1,自引:0,他引:1  
黄碧捷 《环境科学》2013,34(12):4543-4551
秸秆燃烧是我国人为源挥发性有机物(volatile organic compounds,VOCs)排放的重要来源之一,其排放对气候变化和人体健康都有很大影响.对该来源VOCs排放量的可靠估算是在区域或城市范围内进行排放效应分析和污染控制的重要前提.根据2005~2011年武汉市农作物的总产量,采用排放因子分析法估算了武汉市及主要6个农作物产区的秸秆燃烧VOCs的排放量,并分别计算其耕地排放强度(I c)和区域排放强度(I r).结果表明,武汉市2005~2011年年均秸秆燃烧VOCs排放量约为(3 163±139)t,I c和I r分别为(1.52±0.06)t·km-2和(0.37±0.02)t·km-2.粮食类和油料类农作物秸秆燃烧是主要的排放源,需优先控制7大类21种VOCs物质.武汉市分区VOCs排放量从大到小排序依次为黄陂区、新洲区、江夏区、蔡甸区、汉南区、东西湖区,前4个区的排放总量占到武汉市的近九成.江夏区、汉南区、黄陂区和新洲区应作为秸秆燃烧VOCs排放的优先控制区,尤其是能作为全国代表性的江夏区,应引起高度重视.在进行区域或城市范围的秸秆燃烧产生污染物质的生态风险评价时,该污染物的I c和I r都是需要考虑的重要基础数据.最后,提出大力发展农村秸秆资源综合循环经济利用是解决区域或城市范围内秸秆燃烧产生环境问题的可行之径.  相似文献   

9.
基于广东省粮食产量的统计年鉴,建立了广东省2008~2016年秸秆燃烧污染物排放清单和2016年广东省秸秆燃烧VOCs物种清单,并对VOCs臭氧生成潜势进行评估.结果表明,2013~2016年广东省秸秆燃烧各大气污染物排放量较2008~2012年有所降低.这主要是由于禁止秸秆露天燃烧政策的出台及农村生活水平的提高降低了秸秆燃烧比例.2016年各类大气污染物SO_2、NO_x、NH_3、CH_4、EC、OC、NMVOC、CO和PM_(2.5)的排放量依次为2 443.7、16 187.9、6 943.8、29 174.4、3 625.5、14 830.7、65 612.6、591 613.9和49 463.0 t.稻谷秸秆燃烧是最主要的秸秆燃烧污染物来源,占据了污染物总排放量的约68.55%.污染物贡献最大的5个市分别为湛江、茂名、梅州、肇庆和韶关,约占总排放量的58.63%.2016年广东省秸秆燃烧VOCs物种排放清单中,排放量贡献前10的物种分别为:乙烯、乙醛、甲醛、苯、乙炔、丙烯、乙烷、甲苯、正丙烷和丙醛,占总VOCs量的67.91%.在VOCs物种清单的基础上估算了其臭氧生成潜势(OFP),OFP贡献前10 VOCs物种分别为:乙烯、甲醛、乙醛、丙烯、1-丁烯、丙醛、甲苯、丙烯醛、异戊二烯和丁烯醛,占总OFP量的80.83%.  相似文献   

10.
农作物秸秆燃烧PM2.5排放因子的研究   总被引:14,自引:2,他引:14  
农作物秸秆燃烧是一类重要的生物质燃烧形式,已是大气细粒子的来源之一.建立了实验室模拟-稀释通道采样系统,并利用这一系统测定了浙江、四川、河南、河北、北京(主要粮食产区)五地的玉米、小麦和水稻秸秆燃烧过程中PM2.5的排放因子.结果表明:实验室模拟明火燃烧的w(PM2.5)为7.2~39.0 g/kg,与文献[5],[7]~[8]中野外燃烧结果相似,表明两者燃烧状态具有相似性;排放因子受秸秆燃烧状态影响显著,闷火燃烧为明火燃烧的2.4~11.5倍;同时,农作物种类不同PM2.5排放因子也存在明显差别;而排放因子随秸秆生长地域变化比较小.   相似文献   

11.
江苏省粮食生产时空变化及影响因素分析   总被引:10,自引:1,他引:10  
为了研究江苏省农用地粮食生产的时空变化及其影响因素,论文分析了2000年和2006年江苏省农用地粮食单产和总产的空间格局及其变化情况,同时,分析了人为影响因素和气象因素对江苏省农用地粮食单产的影响。结果表明:江苏省农用地粮食单产空间分布差异表现为由南往北不断减少的格局,这个格局2006年与2000年相比没有发生改变,但是,随着近年表现出苏北和苏中粮食单产增加大于苏南的趋势,苏南地区的粮食单产优势在渐渐消失,苏中地区成为江苏省粮食单产的另一个高值区,局部地区接近苏南的单产水平。2000年粮食总产分布表现为高值区多中心的格局,高值区主要分布在苏中和苏北地区,但到2006年后粮食总产高值区在苏北和苏中连片,其他地方的高值区消失。从论文分析结果来看,人为影响因素和降水变化是江苏省近年农用地粮食生产空间格局变化的主要影响因素。粮食生产格局的时空变化需要引起有关部门的注意,其结论可以为相关部门提供决策参考。  相似文献   

12.
利用CALPUFF对安徽和河南秸秆焚烧的模拟与研究   总被引:1,自引:1,他引:1  
秸秆焚烧会产生大量的颗粒物(PM)、氮氧化物、有机碳、苯以及多环芳烃等污染物,不仅影响空气质量,危害人体健康,而且大大降低能见度,对交通运输构成威胁. 针对安徽和河南2009年6月严重的秸秆焚烧现象,对CALPUFF模拟系统和FEPS模型进行重新编译与整合,对空气动力学直径小于10 μm的颗粒物(PM10)进行扩散模拟,得到逐时ρ(PM10)的烟羽扩散,并对模拟结果进行分析. 结果表明,秸秆焚烧过程中焚烧点附近的ρ(PM10)较大,研究区域内部分区域的日均ρ(PM10)大于我国二级标准(150 μg/m3)甚至三级标准(350 μg/m3). 如果考虑二次粒子,其影响程度会更加严重.   相似文献   

13.
分析秸秆焚烧事件引起的空气污染状况,常使用CMAQ、NAQPMS、WRF-CHEM等模型进行空气质量模拟,而污染源排放清单是模拟模型的关键输入.为满足模型清单输入要求,以2014年5月7日四川盆地内发生的一次由油菜秸秆焚烧引起的重污染事件为例,采用排放因子法进行污染物年排放量估算,结合卫星火点数据、土地利用数据对其进行空间特征分析,并使用Bluesky CONSUME模型估算了污染物的烟羽抬升,结合激光雷达获取了气溶胶消光系数以分析其时间特征.结果表明:以2013年为基准年,全年区域内CO、NOx、SO2、PM2.5、PM10及NMVOC(非甲烷挥发性有机化合物)的年排放量分别为5 791.022、193.842、43.268、574.602、1 495.350和1 495.350 t,成都市、德阳市、绵阳市、眉山市、资阳市各污染物排放量占比分别为13.90%、22.39%、31.81%、12.11%、19.79%.各污染物排放量均在地面层呈3个大值中心、2个空值带的分布趋势.采用环境1B卫星和MODIS火点数据结合提取焚烧火点分析发现,5月7日四川盆地内5个城市均存在不同程度的秸秆焚烧情况.经空间分配后发现,此次排放的重点在德阳市及绵阳市南部,污染物排放量最大值出现在德阳市中部,成都市秸秆焚烧火点最少,污染物排放量也最小.受当天大气边界层高度的影响,污染物垂直分布主要集中在35 m以下,并在30 m左右形成污染物极大层.另外,受秸秆焚烧管制影响,在16:00-翌日04:00排放量呈逐渐上升趋势,09:00-16:00排放量较少.研究显示,秸秆焚烧源排放清单与前人研究结果较为一致,排放清单的烟羽抬升结果与气溶胶消光系数的垂直分布较为吻合.   相似文献   

14.
四川省秸秆露天焚烧污染物排放清单及时空分布特征   总被引:6,自引:4,他引:6  
何敏  王幸锐  韩丽  冯小琼  毛雪 《环境科学》2015,36(4):1208-1216
根据收集的活动水平数据,采用排放因子法建立了四川省2012年秸秆露天焚烧污染物排放清单,并分析了污染排放的时空分布特征.结果表明,2012年四川省秸秆露天焚烧共排放SO2、NOx、NH3、CH4、NMVOC、CO、PM2.5、EC以及OC分别为1 210、12 185、2 827、20 659、40 463、292 671、39 277、1 984以及10 215 t;水稻、小麦、玉米、油菜是四大主要的焚烧作物秸秆,对污染物的总贡献率约为88%~94%;秸秆露天焚烧受农作收获的影响,全年的排放主要集中在7~8月,而5月是上半年的一个排放小高峰;秸秆焚烧排放的高值地区主要分布在成都平原、川北地区以及川南地区,川西地区排放分布相对较少;本清单的不确定性主要来自排放因子及秸秆焚烧量.  相似文献   

15.
基于调查的中国秸秆露天焚烧污染物排放清单   总被引:4,自引:0,他引:4       下载免费PDF全文
基于2010年初农村能源消费情况的问卷调查,获得全国分省秸秆露天焚烧比例,在此基础上确定秸秆露天焚烧的活动水平,采用排放因子法建立中国秸秆露天焚烧的污染物排放清单. 结果表明,中国农村秸秆露天焚烧平均比例为20.8%. 2009年全国28个省区(不包括西藏自治区、天津市、上海市、港澳台地区,下同)秸秆露天焚烧的PM2.5、BC、OC、SO2、NOx、CO、NMVOC、NH3、CH4和CO2排放量分别138.1×104、6.4×104、41.1×104、8.7×104、41.8×104、594.6×104、94.4×104、8.0×104、44.2×104和14 355.4×104 t. 稻谷、玉米和小麦是露天焚烧的三大作物秸秆,其对污染物排放的贡献合计约为87%. 秸秆露天焚烧排放量最高的前3位分别为湖南省、河南省和安徽省, 秸秆露天焚烧比例分别43.1%、20.8%和39.7%. 污染排放的高值区主要集中在华北和华中地区. 95%置信区间下的不确定性分析结果显示,PM2.5、BC、OC、SO2、NOx、CO和NMVOC排放的不确定性范围分别为-60%~83%、-78%~147%、-73%~135%、-48%~75%、-49%~78%、-91%~155%和-67%~94%. 2015年初对六省(湖南省、广东省、江苏省、河南省、黑龙江省和辽宁省)农村能源消费调查的结果显示,2014年江苏省、湖南省和广东省的秸秆露天焚烧比例较2009年均有下降,而辽宁省、黑龙江省和河南省则相对上升. 研究显示,秸秆禁烧政策已取得初步成效,建议国家有关部门进一步加大秸秆禁烧政策的推行力度,完善相关政策措施.   相似文献   

16.
秸秆气化商业化发展的驱动与制约因素分析   总被引:2,自引:0,他引:2  
秸秆气化是一项方兴未艾的新兴生物质能源利用技术,而在秸秆资源气化的商业化发展过程中,明显的驱动因素和不利的制约因素并存。论文在调研后认为,其驱动因素包括:农户对包括秸秆燃气在内的高品位能源具有较强的需求;有利于治理污染和保护环境,缓解国家商品能源供应压力等明显的外部性效益;政府在初始阶段对秸秆资源的重视和推动。其制约因素包括:由于秸秆燃气价格偏低,提价可能性小,燃气用户规模小,用途单一,秸秆气化站初始投资较高,使得秸秆气化站的经济效益尚不明显;政府扶持过程中暴露出非市场行为的缺陷;秸秆气化技术的成熟性与实用性不强,秸秆气化设备及施工验收体系的标准化不够完善。  相似文献   

17.
简述了睢宁县农作物秸秆综合利用现状,分析了焚烧或废弃农作物秸秆的原因和存在问题,阐述了农作物秸秆综合利用的途径,提出了推进秸秆综合利用的对策与建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号