首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
影响上海的一次沙尘过程WRF-Dust数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
利用完全耦合大气化学模式WRF-Dust(Weather Research and Forecasting-Dust)对2011年5月1~4日影响上海地区的一次典型沙尘天气过程进行了数值模拟研究,并与观测资料进行了对比分析.结果表明:WRF-Dust模式成功模拟了此次沙尘过程的形成、发展和演变的整体特征及其影响时间及范围;较好地模拟了沙尘到达上海的时间(模式和观测均在1日11:00前后)和直接影响的结束时间(2日02:00前后),而且模式沙尘浓度与观测资料较为一致;但局部地区和部分时段的气象条件和沙尘模拟还存在一定的偏差,未能准确模拟过程后期沙尘回流对长三角沿海地区的影响.分析了导致模拟偏差的原因,并探讨了提高模式沙尘模拟能力的可能途径.  相似文献   

2.
亚洲大陆2000~2002年春季大气沙尘时空特征的数值模拟   总被引:14,自引:0,他引:14  
将矿物沙尘释放与沉降模式和全球大气化学传输模式相耦合,建立了一个能够完整描述沙尘的扬起、输送和沉降动态过程的模式系统,并利用实时气象资料强迫该模式,对2000、2001和2002年春季(3~5月)亚洲大气沙尘时空特征进行了数值模拟研究.结果表明,模拟的3年春季平均大气柱沙尘浓度分布与地面观测的3年春季平均沙尘暴频率分布范围基本吻合,模拟的沙尘气溶胶光学厚度与卫星观测的气溶胶指数具有显著的相关性,验证了该模式对亚洲沙尘的扬起、传输和沉降过程及大气沙尘载荷时空特征有较好的模拟能力,并基于模拟的沙尘释放通量与沙尘气溶胶光学厚度的相关分析,探讨了亚洲沙尘可能的传输路径.  相似文献   

3.
利用耦合了Shao04起沙参数化方案的WRF/Chem模式对2014年4月22~25日发生在我国西北地区的一次沙尘天气进行了模拟,基于ERA-Interim和NECP-FNL两种再分析资料,探究了WRF/Chem在不同再分析资料提供初始场和边界条件时对沙尘天气的模拟能力,并分析了两种再分析资料对模拟结果影响的主要原因。总体来看,WRF/Chem在两种再分析资料提供初始场和边界条件时,均能较合理的模拟出主要的起沙区域、沙尘强度及其时空变化特征,沙源地附近和下游地区各个站点模拟的PM_(10)浓度时间变化特征与观测结果也较为吻合。但相比较而言,对西北地区此次沙尘天气过程,从沙尘的空间分布、沙尘浓度、垂直沙通量和地面各代表站点PM_(10)浓度变化等方面的模拟结果来看,NECP-FNL数据为模式提供初始场和边界条件时要优于ERA-Interim数据的结果,这主要与NECP-FNL数据在WRF/Chem模式中能相对较好的描述起沙过程中摩擦速度的量值有关,从而使得模拟的沙尘区域、强度和垂直沙通量更为合理。  相似文献   

4.
于2019年10月15日~11月7日对上海大气中颗粒物的质量浓度和PM2.5的化学组分进行了在线连续观测,期间,华东地区遭遇了一次大范围的沙尘过程.根据相关规定,结合沙尘示踪组分和WRF-CMAQ 数值模拟,将观测过程分为4 个阶段:沙尘前、沙尘I(输送和滞留过程)、沙尘Ⅱ(海上回流和清除过程)和沙尘后.基于相关规定、...  相似文献   

5.
利用耦合了AFWA和Shao04起沙参数化方案的WRF-Chem模式结合Nudging方法,对2020年4月9~11日发生在我国西北地区的一次沙尘天气过程进行模拟,结合地面及卫星观测数据,对模式模拟沙尘的能力进行了初步验证,分析了不同起沙方案及其结合Nudging方法后对模式模拟结果的影响。结果表明,2种起沙方案均有能力再现此次沙尘天气过程,开启Nudging后2种方案模拟出的沙尘分布结果都有所改进。对于地面沙尘模拟,在沙尘源区不开Nudging的模式模拟结果更接近观测,在沙尘影响区开启Nudging后的模拟结果更优。整体而言,结合了Nudging方法的Shao04起沙方案对我国西北地区的沙尘过程具有更好的模拟能力。Nudging方法对模式模拟风场的能力改进较为明显,从而提高了模式对沙尘的模拟能力。  相似文献   

6.
RegCM3模式模拟我国春季气溶胶光学厚度及检验   总被引:1,自引:0,他引:1       下载免费PDF全文
利用区域气候模式RegCM3模拟了我国2005~2007年春季每月的气溶胶光学厚度及沙尘气溶胶光学厚度(AOD),并利用站点观测资料检验了模拟结果,探讨了沙尘气溶胶和人为活动排放气溶胶对春季AOD的贡献与影响.结果表明,模拟的我国春季AOD主要有3个高值区:南疆盆地和北疆部分地区,河西走廊地区,以及四川盆地和临近的中南部分地区.前两者AOD高值主要由沙尘气溶胶引起,后者主要受人为活动排放的气溶胶影响.观测资料检验表明模拟结果具有一定的可信度,模式对人类活动影响较少区站点的模拟效果优于对人类活动频繁区站点及城市和沿海站点的模拟,对城市和沿海站点的模拟结果偏低,对最偏远的阜康、海北、拉萨和西双版纳等站点的模拟结果与实际观测差别较大.  相似文献   

7.
利用WRF中尺度天气预报模式耦合GOCART大气化学气溶胶辐射传输模式,对2011年4月27日~5月2日源于我国西北沙尘源区的一次大范围沙尘天气过程进行了数值模拟,并结合MODIS卫星观测资料,发现了塔里木盆地对沙尘气溶胶分布的空中蓄尘库效应.为了对该效应及其对下风向城市空气质量的影响进行验证,期间在兰州大学监测点开展了1h分辨率PM10中水溶性Ca2+浓度监测,并结合CALIPSO气溶胶类型垂直分布产品和HYSPLIT气团轨迹模型,利用PSCF方法分析了期间监测点的48h气团后向轨迹.模拟,遥感和监测结果共同表明,塔里木盆地的空中蓄尘库效应会对进入其内部的沙尘气溶胶产生限制-积累作用,若在限制-积累过程中盆地内部近地面风场改变,空中蓄尘库会二次释放沙尘气溶胶,对下风向城市空气质量产生影响.  相似文献   

8.
北京春季强沙尘过程前后的激光雷达观测   总被引:2,自引:0,他引:2       下载免费PDF全文
利用激光雷达、PM2.5和地面气象要素等综合观测资料,分析了北京地区2012年3月30—31日的强沙尘过程前后的天气形势和PM2.5的污染特征,反演了雷达探测期间得到的消光系数,探讨了沙尘过程中气溶胶的时空分布特征及输送特征. 结果表明:沙尘过境时,地面风速最大达到6m/s,沙尘沉降时ρ(PM2.5)增至289μg/m3,相对湿度和能见度明显降低,大气低层逆温和近地面风速等气象条件对沙尘影响地面的时间和程度起到了重要作用;沙尘层雷达反演的气溶胶消光系数最大为0.96km-1,偏振比最大为0.4,近地面消光系数变化与地面ρ(PM2.5)变化规律吻合较好,其探测可以精确反映不同天气形势下气溶胶的垂直结构和时空变化信息;高空输送至北京的沙尘以粗颗粒物为主,细粒子主要来源于本地及周边地区细粒子源;西北方向的内蒙及外蒙地区沙尘输送是导致此次北京强沙尘过程的主要原因.   相似文献   

9.
起沙方案对西北地区沙尘过程模拟的影响   总被引:1,自引:0,他引:1  
研究利用耦合了GOCART、AFWA、Shao01、Shao04和Shao11 5种起沙参数化方案的WRF-Chem模式对发生在西北地区的强沙尘过程进行了模拟,找出了对西北地区沙尘过程模拟更为合理的起沙方案。研究发现,WRF-Chem模式模拟结果较好地再现了气象场的演变特征,耦合了5种不同方案的模式均较合理地模拟出沙尘浓度的时空演变特征、主要的起沙区域和沙尘传输过程。但Shao01、Shao04和Shao11 3种方案下模拟的沙尘分布和起沙过程较符合实际情况。沙尘源地附近和下游兰州市PM_(10)和PM_(2.5)质量浓度时间变化特征的模拟与观测结果也十分接近,Shao1 1方案对PM_(10)和PM_(2.5)质量浓度的模拟结果要优于GOCART、AFWA、Shao01和Shao04 4种方案,说明Shao1 1方案对发生在西北地区的沙尘过程具有更好的模拟能力。  相似文献   

10.
基于CALIPSO对中国春季一次沙尘暴的研究   总被引:2,自引:0,他引:2  
文章利用CALIPSO卫星观测资料,结合气溶胶模式模拟,分析了2013年入春以来发生的第1次强沙尘天气过程中的沙尘气溶胶垂直分布特征及输送特性.结果表明:此次沙尘事件有两个源区,南疆盆地(源区一),沙尘先后输送影响我国内蒙古西南部、甘肃、宁夏等地区.2月27日沙尘在甘肃西部河西走廊附近,沙尘气溶胶分布在2~5 km,退偏振比在0.1~0.5之间,色比在0.4~0.8之间;28日新疆地区沙尘气溶胶分布在4~12 km,退偏振比在0.3~0.5,色比在0.5~1.0之间.蒙古国西南部地区(源区二),沙尘先后影响我国内蒙古中西部地区、甘肃、山西北部、陕西北部、河北北部和东北西南部地区,2月28日内蒙古沙尘气溶胶分布在4~11 km,退偏振比在0.2~0.5之间,色比在0.5~1.2之间.  相似文献   

11.
臭氧(O3)与甲烷(CH4)均是大气中重要的微量气体,对全球气候变化有着重要的影响.为提高全球范围的臭氧、甲烷在气候模式中的预报效果,使用集合平方根滤波(En SRF)同化方法及地球系统模式(CESM)构建了CESM-En SRF卫星资料同化预报系统,并通过设计试验,将大气红外探测器(AIRS)的臭氧与甲烷观测资料同化到气候模式中,对模式的同化再预报效果进行系统的测试与评估.结果显示,臭氧、甲烷分析集合均值的偏差及均方根误差皆低于背景集合均值的偏差及均方根误差.臭氧、甲烷的同化再预报偏差及均方根误差较控制实验都得到改善,但对5 h Pa以上高度臭氧预报准确性的改进效果很小.随循环同化的进行,平流层臭氧与甲烷的平均同化改进率呈增加趋势,并逐渐趋于稳定;对流层平均同化改进率随时间变化不明显.试验表明,该系统可有效利用臭氧与甲烷的观测资料对模式场进行合理的改善,从而有效地提高臭氧、甲烷在气候模式中的再预报效果,但对于平流层顶-中间层高度(5 h Pa以上)臭氧预报准确度的提高,模式中臭氧光化学过程的准确模拟较同化观测资料具有更重要的作用.此外,循环同化对提高5~150 h Pa高度臭氧及1~200 h Pa高度甲烷在CESM模式中的预报效果最有效.  相似文献   

12.
基于天气背景天津地区重污染天气特征分析   总被引:5,自引:2,他引:3  
以天津地区长序列观测PM_(2.5)质量浓度资料为依托,基于天气背景对2014—2016年天津地区重污染天气特征进行分析,并以此为基础评估天津环境气象数值模式(WRF/Chem)在不同天气条件下的模拟效果.结果显示:2009—2016年天津地区重污染天气为341 d,约占全部天数的11.7%,重污染天气主要出现在每年的10月—次年3月,约占全年的82%,重污染天气出现的地面形势主要为锋前低压区、低压槽前、均压场和高压后,4类天气类型占所有重污染天气的73%.同一天气背景下,PM_(2.5)质量浓度模拟值与实况值之间的误差有相似之处,低压槽天气时细颗粒污染浓度模拟明显偏低;冷锋前低压区、华北地形槽和低压过程模拟值略有偏低;高压前和高压底天气模拟值略微偏高;数值模式天津地区重污染TS(Threat score)评分为0.68,漏报与低压槽辐合线模拟位置偏差、冷空气受污染反馈作用影响、小尺度闭合低压区未准确模拟3个因素密切相关;空报主要与冷空气过程影响时间模拟偏差、高压中心位置偏差及其输送通道建立时间影响密切相关.  相似文献   

13.
兰州春夏季PM10碳组分昼夜变化特征与来源分析   总被引:1,自引:2,他引:1  
马丽  余晔  王博  赵素平  李刚 《环境科学》2017,38(4):1289-1297
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响.  相似文献   

14.
为研究沙尘暴期间沙尘排放、干沉降过程以及PM_(10)浓度的时空变化,采用考虑了多种起沙物理机制的起沙参数化方案与WRF/Chem模式相结合的沙尘集成预报系统,模拟了发生在2010年4月24日中国西北地区的黑风暴过程,分析近地表PM_(10)的排放及浓度变化,并与实际观测进行了对比,发现该系统能够很好地模拟此次过程;分析了黑风暴过程中不同地区的沙尘排放及干沉降,其中敦煌地区的排放和沉降分别为4.01和6.23mg/m~2,民勤的排放和沉降分别为5040.79和231.74mg/m~2;发现黑风暴过程中沙尘排放源地主要为民勤地区,黑风暴过程中民勤地区PM_(10)排放为5.04t/km~2;分析PM_(10)不同地区的垂直浓度分布情况,发现PM_(10)主要分布在1000m以下的大气中,并能够扩散到3000m以上的高空进行远距离的输送,扩散到高空的PM_(10)可以输送到几千公里外的地区.  相似文献   

15.
2010年春季东亚地区沙尘气溶胶和PM10的模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
利用区域空气质量模式系统RAQMS,模拟研究了2010年3月东亚地区PM10气溶胶的时空演变,研究了19~23日沙尘暴暴发的过程,并将模拟结果与中国16个城市的PM10地面观测数据进行了比较.结果显示,模式对于PM10和沙尘具有好的模拟能力,可以合理地反映东亚地区PM10的时空分布和沙尘暴的演变过程;观测值和模拟值的总体相关系数达到0.705,两者平均值分别为124.8,165.5mg/m3.2010年3月份东亚地区PM10平均浓度处在较高水平,沙尘气溶胶是PM10的主要组分.3月东亚地区沙尘排放量约110.4Mt,其中68%重新沉降到地表.  相似文献   

16.
沙尘天气过程对北京空气质量的影响   总被引:5,自引:1,他引:5  
利用气象、沙尘暴特种观测以及环境监测等多种资料,对2010年3月19─22日沙尘天气过程的大气结构、沙尘源地和垂直水平输送条件以及北京近地层气象要素、空气质量的变化特征进行了分析. 结果表明:这次强沙尘暴天气过程是由冷空气短波槽快速东移南下、地面冷锋明显发展东移造成的;前期沙尘源地土壤湿度的减小为起沙提供了有利条件,同时低层存在的较强西北气流将从源地卷起的沙尘输送到下游地区;沙尘发生时,20 m气层内风速迅速增大,气层内垂直方向风速梯度也逐渐增大,相对湿度急剧降至20%~30%之间;受这次沙尘天气影响,北京地区ρ(TSP)以及10个区县的ρ(PM10)均迅速增加,空气质量达到重污染.   相似文献   

17.
利用中国大陆气溶胶指数(TOMS AI)、天文总辐射、地面太阳总辐射和沙尘能见度等观测和理论计算资料,对中国北方沙漠戈壁区沙尘气溶胶与太阳辐射的关系进行了分析.结果表明:沙漠地区太阳辐射和沙尘气溶胶指数有非常高的相关性,且变化趋势一致.表明由太阳辐射触发的热对流是影响沙漠地区沙尘气溶胶最主要的因子;沙尘气溶胶进入大气中,必然也会对太阳辐射产生重大的影响.晴日时沙尘气溶胶吸收和散射辐射可达沙尘暴(含扬沙)天气时的60%以上.  相似文献   

18.
利用兰州大学半干旱气候与环境观测站(SACOL)2010年9月至2011年8月的黑碳气溶胶观测资料,分析了兰州市区和郊区黑碳气溶胶的浓度变化特征.结果表明:市区的年平均黑碳浓度要远大于郊区.日变化都呈明显的双峰结构,最大值出现在08:00~10:00,最小值出现在16:00左右;对于月最大频数浓度的年变化,市区和郊区均是5月黑碳浓度最小,其值分别为1143和932ng/m3,1月黑碳浓度最大,分别为10230和5063ng/m3;市区的周变化较郊区明显;沙尘条件下黑碳气溶胶浓度值低于当月的日均值.  相似文献   

19.
运用Models-3/CMAQ模式系统,模拟分析了2014年11月3~11日APEC会议期间北京市PM_(2.5)污染的时空分布特征,并利用过程分析工具IPR研究了会期两次短时间污染过程(4日13:00~5日12:00和10日13:00~11日12:00)中各种大气物理化学过程对城区官园和郊区定陵两个代表性站点近地面PM_(2.5)生成的贡献.结果表明,CMAQ模型合理地再现了北京市PM_(2.5)的浓度水平和时间变化.北京地区4日和10日发生不利于污染物扩散的气象条件,导致PM_(2.5)小时浓度出现高值(分别为188,124μg/m~3),但受减排措施和冷高压的作用,PM_(2.5)高值维持时间较短.4日13:00~5日12:00,水平传输是官园和定陵站点PM_(2.5)的主要贡献者,贡献率分别为49.6%和90.9%.此次污染过程北京地区受南部污染传输影响较强.10日13:00~11日12:00,官园站点PM_(2.5)主要来自源排放在本地的积累(78.8%),定陵站点PM_(2.5)主要来自较弱的水平传输(93.9%).此次过程体现出更加明显的局地性污染特征.两次过程中,PM_(2.5)的主要去除途径均为垂直传输.  相似文献   

20.
西安郊区泾河秋、冬季大气黑碳变化及粒径特征   总被引:1,自引:0,他引:1  
利用西安郊区泾河大气成分站ρ(BC)(BC为黑碳)、粒子数浓度资料和观象台自动站、探空站数据,对西安郊区秋、冬季ρ(BC)变化特征、粒径分布特征和变化原因进行了分析.结果表明:①泾河郊区ρ(BC)比城区的低.城区ρ(BC)日变化呈三峰特征,峰值分别出现在凌晨02:00、清晨07:00和傍晚20:00,分别为17.0、12.5和21.5 μg/m3.泾河郊区ρ(BC)日变化呈双峰特征,峰值出现在上午09:00和晚上23:00,数值分别为5.5和6.1μg/m3;谷值出现在清晨06:00和下午16:00,数值分别为4.9和2.6μg/m3.②ρ(BC)与不同粒径颗粒物数浓度关系不同,其中与粒径<4.0 μm粒子的数浓度成正比,与粒径≥4.0 μm粒子(如沙尘)的数浓度成反比;波长指数分析表明,沙尘可致ρ(BC)实测值偏大.③ρ(BC)与近地面逆温强度有密切相关性,R(相关系数)达到0.412 5(P <0.000 1);风速小于1.5 m/s时BC易堆积,大于1.5 m/s时则相反;连续降水对BC清除效果显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号