首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular biology tools targeting 16S ribosomal RNA (16S rRNA) were used to identify a predominant bacterial population in a full-scale dairy wastewater activated sludge system suffering from poor biosolids separation. Gram and acridine orange staining indicated that viable, Gram-positive microorganisms were present in samples removed from the influent waste stream and represented approximately 50% of total cell counts in samples removed from the mixed liquor. Subsequently, the "full-cycle 16S rRNA approach" showed that phylogenetic relatives of Paenibacillus spp., a low guanine-plus-cytosine percent DNA-content, Gram-positive microorganism, represented up to 30% of total 4,6-diamidino-2-phenylindole (DAPI)-stained cell counts in samples of mixed liquor. Although fluorescent in situ hybridizations with 16S rRNA-targeted oligonucleotide hybridization probes identified Paenibacillus-like spp. in samples removed from the influent waste stream, their abundance was less than 10% of total stained cell counts. Results of this study suggest that Paenibacillus-like spp. were present in low abundance in the influent waste stream, increased in relative abundance within the treatment system, and should be examined further as a candidate bacterial population responsible for poor biosolids separation. This study demonstrates that the full-cycle 16S rRNA approach can be used to identify candidate bacterial populations that may be responsible for operational upsets in full-scale activated sludge systems without prior information from cultivation or microscopic analyses.  相似文献   

2.
Biological hydrogen production by anaerobic mixed communities was studied in laboratory-scale bioreactors using sucrose as the substrate. A bioreactor in which a fraction of the return sludge was exposed to repeated heat treatments performed better than a control bioreactor without repeated heat treatment of return sludge and produced a yield of 2.15 moles of hydrogen per mole of sucrose, with 50% hydrogen in the biogas. Terminal restriction fragment length polymorphism analysis showed that two different Clostridium groups (comprised of one or more species) were dominant during hydrogen production. The relative abundance of two other non-Clostridium groups increased during periods of decreased hydrogen production. The first group consisted of Bifidobacterium thermophilum, and the second group included one or more of Bacillus, Melissococcus, Spirochaeta, and Spiroplasma spp.  相似文献   

3.
宋勇  施周  陈世洋  罗璐 《环境工程学报》2013,7(7):2711-2715
利用水解溶菌酶对SBR系统中的剩余污泥进行减量。通过与未加水解溶菌酶的相同系统对比,研究了水解溶菌酶作用下的SBR系统中剩余污泥的减量效果与微生物群落结构的变化。结果表明,在50 d的运行期内,水解溶菌酶作用下的SBR系统中剩余污泥减量总计达到76.3%,同时该系统对COD与TN的平均去除率分别为88.2%与53.8%。通过PCR-DGGE分析可知,随着运行时间的增加两系统微生物群落结构的差异逐步明显,SBR系统中原有的部分优势微生物在水解溶菌酶的作用下逐渐减弱。另外,对微生物群落的部分优势细菌进行克隆测序和系统发育树分析,通过鉴定获得的7条细菌的16S rDNA序列,它们分别与放线菌和杆菌同源性在97%以上。  相似文献   

4.
Efficient nutrient removal in decentralized wastewater treatment systems is a challenging task. To improve the removal of organic matter and nitrogen from wastewater, two types of bioreactors using membrane-aerated biofilm reactor (MABR) and microbial fuel cell (MFC) techniques were evaluated. During more than 250 days of continuous-flow reactor operation, both reactors showed consistently high chemical oxygen demand removal (>86%). At an influent ammonium-nitrogen (NH4(+)-N) concentration of 30 mg N/L, the average effluent NH4(+)-N concentrations were 6.2 and 0.5 mg N/L for the MABR and MFC reactor, respectively, while the effluent nitrate-nitrogen (NO3(-)-N) concentrations were 5.4 mg/ L in the MABR and 19.2 mg/L in the MFC-based reactor. The overall total inorganic nitrogen removal efficiencies were 64% and 36% for the MABR and MFC reactor, respectively. At the measured dissolved oxygen concentrations of 5.2 and 0.23 mg/L in the aerobic/anoxic zone of the MFC and MABR, respectively, a specific oxygen uptake rate of 0.1 g O2/g VSS-d, resulting from ammonia oxidation, was detected in the settled sludge of the MFC, while no nitrifying activity of the sludge from the MABR was detected. Molecular microbial analysis demonstrated a link between the bacterial community structure and nitrifying activity. The relatively high abundance of Nitrosomonas europaea was associated with its detectable nitrification activity in the settled sludge of the MFC. The results suggest that MABR and MFC techniques have the potential to improve organic and nitrogen removal in decentralized wastewater systems.  相似文献   

5.
A review of biofouling and its control in membrane separation bioreactors.   总被引:5,自引:0,他引:5  
Membrane separation technology is increasingly becoming an important innovation in biological wastewater treatment. Biofouling of the membrane is a major factor affecting the efficient and economic operation of membrane separation bioreactors (MBRs). This review summarizes the state-of-the-art progress in understanding the mechanisms and factors affecting membrane biofouling and the strategies for biofouling control. Biofouling mechanisms include the adsorption of soluble and suspended extracellular polymers on membrane surfaces and in membrane pores, the clogging of membrane pore structure by fine colloidal particles and cell debris, and the adhesion and deposition of sludge cake on membrane surfaces. Design and operating conditions of membrane modules and materials, hydrodynamic conditions in MBRs, process and environmental conditions of activated sludge systems, and the physicochemical properties of the wastewater are the dominant factors determining membrane biofouling. Current strategies to control biofouling include periodic relaxation, backwashing, chemical cleaning, and possible manipulation of hydrodynamic conditions and sludge properties. Achieving full integration of MBRs in wastewater treatment technology requires further research and development. Fundamental information on the bacteria, colloid, and membrane interaction, developed through multimethod and multiscale approaches, is particularly needed.  相似文献   

6.
Detection of filamentous bacteria morphotypes involved in scum formation in activated sludge wastewater treatment plants by conventional sludge microscopy is often doomed to fail because of morphological and taxonomical variations. The aim of this study is to compare detection, identification, and quantification quality of filamentous "scum bacteria" found by conventional activated sludge microscopy and fluorescence in situ hybridization (FISH). In the case of filamentous Microthrix parvicella and Eikelboom morphotypes 1863 and 1851, conventional activated sludge microscopy and FISH results correspond well. In contrast, conventional activated sludge microscopy overlooks nocardioform actinomycete and type 1863 single cells. On the other hand, FISH underestimates filamentous nocardioform actinomycetes and morphotypes 0041/0675 or 0092 because of insufficient cell wall permeability or because of their taxonomic variability, with a resulting inadequacy of previously published probes. Nostocoida limicola morphotype results are still inconclusive because of low bacteria numbers being available in situ and the enormous taxonomic variability within this group.  相似文献   

7.
A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.  相似文献   

8.
The effect of heavy metal shock loading on biological treatment systems was studied by traditional methods and molecular biological techniques. Two kinds of SBR (sequence batch reactor) operation units, unacclimated and acclimated activated sludge systems, were studied. The addition of special nutrients and powdered activated carbon (PAC) to stimulate heavy metal uptake and recovery were studied. The kinetic constants could be used to describe the effect of the inhibition of substance utilisation. The results showed that heavy metal shock loading had a greater effect on the unacclimated activated sludge system than on the acclimated one. The special nutrients greatly enhanced the uptake of copper, and the PAC improved sludge settling and decreased the turbidity of the effluent. The variation of dominant species and the diversity of the bacterial community were analysed using 16S ribosomal DNA. Compared with the slight change of dominant species during acclimation by copper, there was a great change in the acclimated system shocked by a high concentration of copper. The results confirmed that the acclimation could improve the resistance of microorganisms to heavy metal toxicity.  相似文献   

9.
This study explored the biodegradation potential of two agricultural pesticides (2,4-D and isoproturon) as well as their effect on the performance of the anaerobic digestion process. Three 3.5 L batch reactors were used, having the same initial isoproturon concentration (25 mg/L) and different 2,4-D concentrations (i.e. 0, 100, or 300 mg/L, respectively). All systems were fed with equal amounts of primary sludge and digested sludge and operated at the low mesophilic range (32 ± 2°C). Following an acclimation period of approximately 30 days, complete 2,4-D removal was achieved, whereas isoproturon biodegradation was practically negligible. The presence of 2,4-D did not have a direct effect on acidogenesis since soluble organic carbon [expressed either as volatile fatty acids (VFAs) or as total organic carbon (TOC)] peaked within the first 10 days of operation in all bioreactors. Utilization of VFAs however appeared to follow two distinct patterns: one pattern was represented by acetate and butyrate (i.e. no acid accumulation) while the other was followed by propionate, isobuturate, valerate and isovalerate (i.e. acid accumulation, duration of which was related to the initial 2,4-D concentration). On the whole, all reactors exhibited a successful digestion performance demonstrated by complete VFAs utilization, considerable gas production (containing 45 to 65% methane by volume), substantial volatile suspended solids (VSS) reduction (42 to 50%), as well as pH and alkalinity recovery.  相似文献   

10.
Anammox enrichment from different conventional sludges   总被引:23,自引:0,他引:23  
Chamchoi N  Nitisoravut S 《Chemosphere》2007,66(11):2225-2232
Three sets of sequencing batch reactor (SBR) were used for Anammox enrichment from conventional sludges including upflow anaerobic sludge blanket, activated sludge, and anaerobic digestion sludge. After four months of operation, the Anammox activity occurred in all reactors allowing continuous removal of ammonium and nitrite. The morphology of the cultivated Anammox sludge was observed using scanning electron microscope. The photographs showed that the obtained culture was mostly spherical in shape, presumably Anammox culture. There were also filamentous-like bacteria co-existing in the system. Fluorescence in situ hybridization (FISH) analysis using 16S rRNA targeting oligonucleotide probes PLA46 and Amx820 showed that the dominant population developed in all SBRs was hybridized with both PLA46 and Amx820 gene probes. It means that the cultivated biomass in all SBRs was classified in the group of Planctomycetales bacteria with respect to the anaerobic ammonium-oxidizing bacteria, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Numerous time sequences were tested in this experiment. The shortest workable reaction time was found in the range from 5 to 7 h. Good quiescence of sludge was obtained at 30 min of settle period followed by a discharge period of 15 min. A long-term performance showed a near perfect removal of nitrite based on the influent NO2(-)-N concentration of 50-70 mg l(-1). The maximum ammonia removal efficiency was 80% with the influent NH4(+)-N concentration of 40-60 mg l(-1). It is, therefore, concluded that Anammox cultivation from conventional sludges was highly possible under control environment within four months.  相似文献   

11.
分别以厌氧污泥、脱氮硫杆菌菌悬液和厌氧污泥并添加脱氮硫杆菌菌悬液为接种物,以硫化物和硝酸盐为进水基质,考察不同接种物条件下,各反应器的硫化物氧化特性、反硝化特性、生化反应机理及微生物特性。结果表明,在无菌条件下,硫化物不能被硝酸盐化学氧化。接种脱氮硫杆菌菌悬液的2#反应器的硫氧化速率为1.98 g S/(m3.h),停留24 h硫化物的去除率高达97%,脱硫能力最强,该接种条件下以硝酸盐氧化硫化物为主反应,优势菌为杆菌,进水的NO3--N/S应控制在0.4以下,可以实现高效生物脱硫。接种厌氧污泥的1#和3#反应器的脱氮效果比2#反应器好,停留时间为24 h时,硝酸盐的平均去除率为96%。单独接种厌氧污泥的1#反应器的硫氧化速率为1.78 g S/(m3.h),其优势菌为球菌,该接种条件下以硝酸盐氧化硫化物和硝酸盐氧化单质硫为主反应,进水的NO3--N/S应控制在0.8左右。以厌氧污泥联合脱氮硫杆菌为接种物时,硫氧化速率为1.71 g S/(m3.h),反应器以硝酸盐氧化硫化物、硝酸盐氧化单质硫以及异养反硝化为主反应,驯化后优势菌为球形、卵圆形和短杆状,应控制进水NO3--N/S为1.2,可以实现同步脱硫反硝化,该工艺既可以用于含硫废水的处理,也可以用于C/N低的硝酸盐废水的处理。  相似文献   

12.
Bioaugmentation for the removal of polyaromatic hydrocarbons (PAHs) from wastewater using bacteria and yeasts is considered environment-friendly and a cost-effective technique. The effectiveness of this biodegradation system depends on the stability of inoculated microorganisms and the availability of nutrients. This study is aimed to investigate the removal of high molecular weight (HMW)-PAHs from biologically treated produced water using different biological systems. Three systems, inoculated with activated sludge (AS), the mixture of five yeast strains (MY), and the mixture of AS and the five yeast strains (SY), respectively, were constructed, and their performance for the removal of HMW-PAHs was compared over 10 weeks. The effluent of the biologically treated produced water from an oilfield was used as the influent after chrysene and benzo(a)pyrene were spiked as HMW-PAHs. Polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) and fluorescent in situ hybridization (FISH) techniques were used to examine the changes in the structures and abundances of the bacterial and yeast communities in these three systems. Only SY and MY systems were capable to remove chrysene (90.7 % and 98.5 %, respectively) and benzo(a)pyrene (80.7 % and 95.2 %, respectively). PCR-DGGE analysis confirmed that all of the five yeast strains inoculated remained in the SY and MY systems, while FISH results showed that the relative abundance of yeast in the SY and MY systems (10.6 % to 21.9 %, respectively) were significantly higher than AS system (2.3 % to 7.8 %, respectively). The relative abundances of the catechol 2,3-dioxygenase (C23O) indicated that the copy number ratios of benzene ring cleavage gene C23O in the yeast amended systems were much higher than that in the AS system. In this study, all of the three systems were effective in removing the low molecular weight (LMW)-PAHs, while HMW-PAHs including chrysene and benzo(a)pyrene were efficiently removed by MY and SY systems, not by AS system. The high HMW-PAHs removal in the MY and SY bioaugmentation systems possibly attributed to the inoculation of the mixed yeast culture. By combining the PCR-DGGE results with the FISH analyses, it was found that yeast probably consisting mainly of the five inoculated strains inhabited in the two bioaugmentation systems as a dominant population. The relatively higher performance of the SY system might be attributed to the suspended growth type which permitted a more efficient contact between microbial cells and contaminants. The bioaugmentation systems (SY and MY) were successfully established by inoculating with five nonindigenous yeast strains and demonstrated high performance in removal of HMW-PAHs.  相似文献   

13.
为了揭示接触氧化池中悬浮污泥和生物膜菌群群落结构的异同,提取基因组DNA,采用PCR扩增与454高通量测序技术对两者菌群测序并进行了操作单元(OTU)聚类分析、多样性分析和分类学分析。结果表明,悬浮污泥和生物膜菌群的高通量测序分析分别得到优化序列8 256条和10 592条,测序覆盖深度都在80%左右,经过97%相似度归并后分别得到570个OTUs和694个OTUs,菌群多样性分析显示悬浮污泥内菌群的丰度和多样性都低于生物膜,悬浮污泥有356个属的细菌构成,而生物膜内则有387个,都归属于21个门。悬浮污泥和生物膜内不仅存在共有菌种,也含有各自的特定菌种,说明不同的微环境使其有了相对应的优势群落。通过这种差异的比较分析,更能准确地了解接触氧化池中微生物的群落组成情况,有利于分析其与系统功能的关系。  相似文献   

14.
This study explored the biodegradation potential of two agricultural pesticides (2,4-D and isoproturon) as well as their effect on the performance of the anaerobic digestion process. Three 3.5 L batch reactors were used, having the same initial isoproturon concentration (25 mg/L) and different 2,4-D concentrations (i.e. 0, 100, or 300 mg/L, respectively). All systems were fed with equal amounts of primary sludge and digested sludge and operated at the low mesophilic range (32 +/- 2 degrees C). Following an acclimation period of approximately 30 days, complete 2,4-D removal was achieved, whereas isoproturon biodegradation was practically negligible. The presence of 2,4-D did not have a direct effect on acidogenesis since soluble organic carbon [expressed either as volatile fatty acids (VFAs) or as total organic carbon (TOC)] peaked within the first 10 days of operation in all bioreactors. Utilization of VFAs however appeared to follow two distinct patterns: one pattern was represented by acetate and butyrate (i.e. no acid accumulation) while the other was followed by propionate, isobuturate, valerate and isovalerate (i.e. acid accumulation, duration of which was related to the initial 2,4-D concentration). On the whole, all reactors exhibited a successful digestion performance demonstrated by complete VFAs utilization, considerable gas production (containing 45 to 65% methane by volume), substantial volatile suspended solids (VSS) reduction (42 to 50%), as well as pH and alkalinity recovery.  相似文献   

15.
In this research, the role of plants in improving microorganism growth conditions in subsurface flow constructed wetland (CW) microcosms was determined. In particular, microbial abundance and community were investigated during summer and winter in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms (control, CT). Results revealed that the removal efficiencies of pollutants and microbial community structure varied in winter with variable microbial abundance. During summer, PA comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, bacteria were more abundant in root surfaces than in sand. Plant presence positively affected microbial abundance and community. The potential removal ability of CT, in which Cyanobacteria and photosynthetic bacteria were abundant during summer, was more significantly affected by temperature reduction than that of PA with plant presence.  相似文献   

16.
为了研究微氧条件下折流反应器处理生活污水的微生物学机理,针对产甲烷菌的MCR基因采用实时荧光定量PCR和构建克隆文库的方法,对反应器中的关键功能微生物产甲烷菌的分布特点与群落结构变化进行了分析。结果表明,微氧条件下折流反应器的环境条件可以保证产甲烷菌的增长,不同格室的产甲烷菌丰度均要高于接种污泥(1 720 copies/ng),其中经过微氧曝气处理的1#(2 864 copies/ng)和2#(2 282 copies/ng)格室产甲烷菌丰度低于厌氧状态的3#(3 508copies/ng)格室;微氧处理后折流反应器产甲烷菌的群落结构发生了明显的变化,接种污泥的产甲烷菌多属于Methanomicrobiales目的 Methanoregulaceae属(6/9),而保持微氧状态的1#格室中产甲烷菌多隶属于Methanomicrobiales目(6/10)的其他类群,2#格室的产甲烷菌则多隶属于Methanobacteriales目(5/10),保持厌氧状态的3#格室的产甲烷菌主要属于Methanomicrobiales目(3/10)和Methanosarcinales目(3/10);产甲烷菌MCR基因的多样性指数表明微氧曝气的引入降低了活性污泥中产甲烷菌的生物多样性。  相似文献   

17.
对螺旋升流式反应器脱氮除磷及去除COD的运行效果进行了研究 ,该系统连续稳定运行 6个月的结果表明 ,能保证出水平均质量浓度TN小于 1 0mg/L ,TP小于 0 5 0mg/L ,COD小于 31mg/L ,对TN、TP和COD的去除率分别达 86 %、96 %和 94 %以上。并且对SUFR系统的污泥性能进行了分析 :(1 )螺旋升流特征使本反应系统中的污泥易于颗粒化 ;(2 )SUFR系统中的微生物种群具有多样性 ;(3)污泥在好氧反应器中表现出了同步硝化反硝化功能 ;(4 )污泥在缺氧反应器表现出了反硝化吸磷现象  相似文献   

18.

Goals, Scope and Background

From 2005, deposition of organic waste will be banned in Sweden. Likewise, in Germany and Austria, similar bans are being planned, and further countries will probably follow. Thus, there is a need to develop new methods and to refine established techniques for sludge management in the whole of the European Union. For this end, there is also an urgent need for appropriate ecotoxicological approaches to elucidate and assess the hazard potential of sewage sludge. Therefore, the present study was designed to assess the capacity of various established sludge treatment methods using different oxygen regimes to degrade recalcitrant nitro-substituted organic compounds and reduce their toxicity. Sewage sludge samples from a wastewater treatment plant in Sweden (Cambrex Karlskoga AB, industrial area Björkborn) receiving wastewater from industries manufacturing pharmaceutical substances, chemical intermediates and explosives were processed with different sludge treatment methods. Among other treatment methods, bioreactors (for anaerobic and aerobic sludge treatment) were used. In the present investigation, a battery ofin vitro bioassays was employed to compare the cytotoxic and genotoxic potentials of different fractions of sludge samples in order to elucidate whether the treatments were suitable to reduce the toxicity of the sludge.

Methods

In order to investigate the cytotoxicity of the extracts of treated and untreated sludge samples, the acute cytotoxicity test with the permanent cell line RTL-W1 was used. Genotoxicity was tested by means of the comet assay (single cell gel electro-phoresis) with RTL-W1cells, and mutagenicity was assessed with the Ames test using the Salmonella typhimurium strains TA98, TA98NR and TA100. Sludge toxicity was tested in different fractions of organic extracts produced by acetone and hexane extractions. The subsequent clean-up procedure (silica gel chro-matography and elution with hexane and dichloromethane) resulted in two fractions, a lipophilic hexane-fraction and a semi-lipophilic dichloromethane-fraction. For the genotoxicity and mutagenicity tests, these fractions were reunited at equal ratios.

Results and Discussion

The acute cytotoxicity test with RTL-Wl cells revealed a high cytotoxic potential for the semi-li-pophilic DM-fractions of all sludge samples with NR50 values (= effective concentration for 50% cell death in the neutral red test) from 8.9 up to 20 mg sludge d.w./ml medium. A low cytotoxic potential for the hexane fractions of the untreated sludge samples (NR50 400 to < 400 mg sludge d.w./ml medium) was observed, whereas the hexane fractions of the treated sludge samples showed elevated cytotoxicity increasing further with treatment in the bioreactors. The comet assay indicated that three out of eight of the reunited fractions had a significant genotoxic potential. Whereas the genotoxic potential of one sample treated anaerobically was very high with an induction factor of 11.6, a similar sample (taken from the same anaerobic reactor four months later) and one untreated sample showed lower potentials. The samples treated in another anaerobic bioreactor as well as the samples treated aerobically showed no genotoxic potential. Results indicate that aerobic treatment was basically adequate for reducing the genotoxicity of the sludge, whereas anaerobic treatment was only partly useful for reduction of genotoxicity. The Ames test revealed a very high mutagenic potential for the reunited fractions of the untreated sludge samples with strain TA98 (maximum induction factors (IFmax up to 45) and a relatively high potential for one of the samples treated aerobically (S2, IFmax = 18 (TA98, S9-)), thus documenting the suitability of both anaerobic and aerobic treatments to reduce the mutagenicity of the samples, however, with the aerobic treatment being less effective. Conclusions. Overall, none of the microbiological treatments for wastewater sludge in bioreactors was found to be ideal for general toxicity reduction of the sludge samples. Whereas cytotoxicity of the sludge increased or levelled off in most cases following either treatment, genotoxicity both increased or decreased after anaerobic treatment, depending on the specific sample. However, mutagenicity could generally be reduced by anaerobic treatment and, to a lesser degree, by aerobic treatment. Recommendationsand Perspectives. The complex modification of the diverse damage potentials of sludge sample extracts by use of anin vitro biotest battery following treatment for toxicity reduction in bioreactors showed that considerations of different toxicological endpoints is essential for an adequate hazard assessment. Whereas in the case of cytotoxicity reduction, the reactors proved ineffective, mutagenicity could be reduced significantly at least in some cases in this case study.
  相似文献   

19.
在温室条件下进行了15周的盆栽实验,考察了施用城市污泥堆肥后,土壤中养分含量的变化规律,重点研究了施用城市污泥堆肥对土壤微生物群落结构变化的影响。实验发现,污泥堆肥能改善土壤养分,有机质和氮、磷含量得到显著提高。经PCR—DGGE分析,施肥1周后土壤中细菌和真菌的群落结构均发生了较大的变化。随着施肥时间的延长,细菌在富含有机质及氮、磷等养分的土壤环境下大量生长,多样性提高,其优势菌群属于γ变形菌、α变形菌和芽单胞菌;随着有机质的不断消耗,细菌的生长活性受到抑制,最终由于养分的缺乏,细菌种群多样性呈现小幅度的降低,优势菌群变为绿弯菌门、γ变形菌亚纲和厚壁菌门。对于真菌,其多样性指数在堆肥前3周逐渐提升,在第3~12周的监测中呈现相对稳定的变化趋势,优势菌群主要为座囊菌纲和散囊菌纲。  相似文献   

20.
A three-stage system was developed to automate a batchwise toxicity testing protocol designed for assessing wastewater toxicity to activated sludge. The three-stage system used the luminescent bacterium Shkl. The three stages were cell storage, cell activation, and continuous toxicity testing. Shkl cells were stored in a bioreactor at 4 degrees C when the system was not in use and activated in another bioreactor for use in toxicity tests conducted in a continuous manner. The system could quickly be switched between the "off" and "on" modes, and operation of the system was easy. The stability of the system, in terms of cell density and bioluminescence in the storage and activation bioreactors, and the response of the activated cells to a metal and an organic toxicant were studied. The feasibility of the system design was demonstrated by simulating zinc toxicity episodes in synthetic wastewater. The needs for further modifications and improvements of the system were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号