首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is considered that use of hydrogen as an energy source may contribute to environmental improvement and provide an alternative energy system. Moreover, it is anticipated that hydrogen will be in great demand in the near future for use in such vehicles as fuel cell-based cars. Research and development of a number of advanced methods of hydrogen production (OTEC, water photolysis using a semiconductor, a municipal waste gasification—smelting system, etc.) is currently under way. A comparison of different hydrogen-rich fuels in this paper shows that methane is advantageous for hydrogen production from the viewpoint of energy efficiency as measured by thermodynamic analysis. This paper therefore proposes combining existing technology for hydrogen production with an unconventional methane source in order to facilitate the realization of a hydrogen energy system: i.e., this paper proposes combining the process of steam reforming, which is commercialized worldwide, with use of untouched natural gas hydrate (NGH) resources. Gas hydrate deposits, which are distributed worldwide, hold great amounts of methane gas and have hardly been touched. This paper presents the economic parameters of NGH development and discusses the concept of devising useful applications of NGHs, with consideration given to (1) independence from current fossil fuels; (2) energy transport using the hydrate system; (3) CO2 sequestration — replacement of methane hydrate with CO2 hydrate in the submarine layer and (4) improvement of current steam reforming of methane by CO2 reuse and zeolite application. This paper thus proposes a new solution that will make a key contribution to the systematic development of a new sustainable energy structure.  相似文献   

2.
Solid waste disposal poses a significant problem, as it leads to land pollution if openly dumped, water pollution if dumped in low lands and air pollution if burnt. Moreover, the scarcity of land and increase in land prices especially in Dhaka, the capital city of Bangladesh create the problems of developing new landfill sites. Realising the existing and future impacts of waste disposal issues, the analytic hierarchy process model was applied to select an appropriate Waste-to-Energy (WTE) conversion technology for household waste of Dhaka-Mirpur Cantonment area. Three alternatives, namely, anaerobic digestion, pyrolysis and plasma gasification (PG) technologies and nine criteria under three aspects (technological, environmental and financial) were chosen for comparison. The analysis revealed that PG is the most appropriate WTE conversion technology in the study area. The selected PG technology has a relatively small footprint; it can treat unsorted waste and can produce good-quality synthetic gas without generating extremely toxic by-products.  相似文献   

3.
This article outlines problems related to the location of facilities designed to treat the organic fraction of municipal solid waste (OFMSW). Anaerobic digestion (AD) facilities are investigated as a treatment option, while taking into account the aspects of renewable energy generation. This research has been spurred on by the relationship between waste management, energy generation issues and spatial planning procedures. The analysis is focused on urban and semi-urban areas of medium and large cities. One of the most difficult issues associated with siting of waste processing plants is its integration with local infrastructures, avoiding conflicts and negative environmental impacts at the same time. This research aims to analyse possible locations for AD plants fuelled by OFMSW in Poland. Based on the experience gained from other countries and lessons learnt from the analysis of existing facilities in Europe, conditions for the location of this type of waste treatment plants have been defined, with the focus on economic, environmental and social issues. Most likely, the results of the multicriteria decision analysis for siting of municipal solid waste AD plants (M-BIST tool) could be transferred to other countries, especially those with a comparable GDP level and a similar framework for a waste management system.  相似文献   

4.
It is considered that use of hydrogen as an energy source may contribute to environmental improvement and provide an alternative energy system. Moreover, it is anticipated that hydrogen will be in great demand in the near future for use in such vehicles as fuel cell-based cars. Research and development of a number of advanced methods of hydrogen production (OTEC, water photolysis using a semiconductor, a municipal waste gasification—smelting system, etc.) is currently under way.A comparison of different hydrogen-rich fuels in this paper shows that methane is advantageous for hydrogen production from the viewpoint of energy efficiency as measured by thermodynamic analysis. This paper therefore proposes combining existing technology for hydrogen production with an unconventional methane source in order to facilitate the realization of a hydrogen energy system: i.e., this paper proposes combining the process of steam reforming, which is commercialized worldwide, with use of untouched natural gas hydrate (NGH) resources. Gas hydrate deposits, which are distributed worldwide, hold great amounts of methane gas and have hardly been touched. This paper presents the economic parameters of NGH development and discusses the concept of devising useful applications of NGHs, with consideration given to (1) independence from current fossil fuels; (2) energy transport using the hydrate system; (3) CO2 sequestration — replacement of methane hydrate with CO2 hydrate in the submarine layer and (4) improvement of current steam reforming of methane by CO2 reuse and zeolite application. This paper thus proposes a new solution that will make a key contribution to the systematic development of a new sustainable energy structure.Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

5.
Alternative production approaches are required because of conventional manufacturing's adverse environmental impacts. Remanufacturing returns used products to at least original performance specification from customers' perspectives and gives the resultant products warranties at least equal to that of new equivalents. Remanufacturing is relatively novel in research terms compared to conventional manufacture and recycling but often is more profitable than both. It would help manufacturers address competitive, environmental and legislative pressures by enabling them to meet pressing waste legislation while producing high-quality, lower cost products with less environmentally damaging end-of-life (EoL) and manufacturing modes. Remanufacturing is highly profitable in large, complex mechanical and electromechanical products but with conventional manufacturing and design modes not so in smaller products; particularly fast moving ones. However, effective waste management is urgently required for such products because waste electrical and electronic equipment constitutes the fastest growing EU waste stream and a large percentage of products being produced by major developing economies such as China are of this type. Active disassembly (AD) enables product non-destructive, self-disassembly at EoL and was invented to facilitate a step-change improvement in recycling. This research investigated the use of AD to extend profitable remanufacturing into small EoL electrical and electronic products.  相似文献   

6.
Attari Saroba is a village located on the Ferozepur road near Attari Darbar. This study assesses techno-economic feasibility for biogas production in Attari Saroba village using different tools for data collection. Since there was no waste management system in the village, the residents threw household waste in the streets and used the animal waste as the fertilizer, while the leftover waste was disposed off in heaps scattered around the village. This waste can be utilized to generate biogas that can be a renewable substitute for natural gas as natural gas is becoming scarce in our country and is suitable for home use in cooking and heating purposes. Thus, the objective of the study is to combat pollution by managing organic waste and to produce biogas by reusing waste in Attari Saroba through waste recycling process. The suggested type of digester for this area is dispersed growth, Chinese-type combined digester and gasholder. Two designs of different measurements were proposed due to varying family size. The residents were receptive to the idea of installing and maintaining digesters in their homes as they faced regular gas shortages in their area.  相似文献   

7.
Irrigation is indispensable to overcome insufficient rainfall and to achieve a stabilized yield for tea production. As the severe scarcity of water resources because of climate change, water conservation through efficient irrigation has turned into a vital strategy for tea sector in solving this rising challenge. This paper analyzes irrigation water use efficiency of small-scale tea farms in Vietnam and identifies its determinants applying stochastic frontier analysis. Results showed that under decreasing returns to scale, the mean irrigation water use efficiency was 42.19 %, indicating the existence of substantial water waste. If farmers become more efficient in using water, saving 57.81 % of irrigation water is possible unaccompanied by reducing the observed output. The factors affecting tea farms’ irrigation water use efficiency were investigated by Tobit model. Gender, water shortage awareness, soil and water conservation practice, off-farm income share, extension services access and well water utilization showed significant influence on the efficiency of irrigation water. The study’ results provide insights to policymakers in implementing better water resource management amid climate change.  相似文献   

8.
由于产业发展正处于转型阶段,我国畜禽养殖污染治理中的管理问题比技术问题更加突出,选择适宜的组织管理模式尤其重要。融合了效果分析、效率评价和适应性分析,尝试构建一个养殖废弃物资源化利用管理模式综合评价框架,并选择太湖流域4个不同类型的典型案例进行方法例证。研究表明,传统的养殖企业主导型管理模式应用于小型、分散养殖废弃物资源化利用时面临着经济效率低、适应性差难题;农村废弃物处理中心、种植企业和有机肥企业的参与可以改善小型、分散养殖废弃物资源化利用的经济效率;综合考虑效果、效率与适应性,种植企业、有机肥企业主导型模式的适宜推广范围更广。应根据不同地区种植-养殖产业关系、污染治理需求、经济发展水平与政府投入能力等,灵活组合应用不同管理模式。  相似文献   

9.
10.
The environmental consequence of meeting the planet’s energy requirements has shown that biological degradation of organic constituent from wastewater does not only produces biogas. It also produces flammable methane that has 21 times more global warming potential or greenhouse effect than carbon dioxide. This becomes a loss of potential renewable energy when it is flared. This study investigates recoverable energy from cassava wastewater and effect of unrecovered onsite (not from treatment plant) wastewater energy. Sludge from both onsite untreated and offsite treated wastewater from a cassava processing station in a sub urban community of Nigeria was analyzed. The result shows that the offsite treatment has a methane potential of 27.428 m3/day compared to the onsite methane emission potential with 17.807 m3/day. The onsite 17.807 m3/day of methane is equivalent to 0.126 kgCH4/year of emitted methane base on industrial procedure standards by the IPCC (2006) guidelines for national greenhouse gas inventories. An additional 54.03% of methane will be recovered if the onsite emissions were to be captured . At an emission efficiency of 0.025 kgCH4/kg COD, the untreated wastewater indicates a potential contribution to the greenhouse effect. A mathematical model analysis was presented for ease in determining the amount of methane emitted from the untreated wastewater. This study support suggested methodologies and previous work comparing anaerobic offsite methane potential and untreated wastewater methane emission potentials along with its greenhouse effects.  相似文献   

11.
In the present paper, the optimum design of a PV system used to operate a water pumping system was determined for Oman. The system design focused on the environmental conditions of Sohar city. The implementation and measurement of the designed system are presented to prove the effectiveness of the proposed system. The results show that the system can provide the required power at peak hours, leading to a substantial reduction in the sizing of the PV system. Consequently, the investment capital costs 2400 USD, and the cost of energy is equal to 0.309 USD/kWh. Furthermore, the results indicate that the system annual yield factor is 2024.66 kWh/kWp and that the capacity factor is 23.05 %, which is encouraging since the latter is typically 21 %. The system capital cost and the cost of energy are worth comparing to a diesel generator. A comparison is made between the proposed system and several others in the literature. The comparison indicated that the system cost of energy is promising.  相似文献   

12.
Connections and relationships between conservation practices and community development in relation to rural sustainability have received considerable attention in recent years, especially in developing countries. Among many sound practices around the world, anaerobic digestion (AD) technology has long been encouraged as an alternative source of energy, while contributing to resource conservation and economic development initiatives in developing rural areas. Guided by the theme of sustainable development, the study examined the current applications of AD technology in Meiwan Xincun Village (MWXCV) in Hainan Province, China. Employing a self-administered questionnaire survey, face-to-face interviews and on-site observation, the study explored the diffusion process, current operation and local impacts of AD practice. The study identifies that leadership, education, technical support and local economy are key factors affecting the diffusion of AD, and governmental financial incentives are significantly effective measures to make the technology economically viable for local residents. The technology was found to fit into the rural livelihood system of the village, with considerable environmental and socio-economic benefits. Guided by the leaders of the village, the local residents generally accept and support the practice and are willing to contribute to introducing the technology in and out of the village. Suggestions regarding the utilization and diffusion of AD elsewhere are presented to enhance the potential capacity of the practice to generate benefits across rural Hainan.  相似文献   

13.
As the global population is expected to reach 9 billion by 2050, humanity needs to balance an ever increasing demand for food, energy and natural resources, with sustainable management of ecosystems and the vital services that they provide. The intensification of agriculture, including the use of fertilisers from finite sources, has resulted in extensive soil degradation, which has increased food production costs and CO2 emissions, threatening food security. The Bioenergy sector has significant potential to contribute to the formation of a circular economy. This paper presents the scientific, regulatory and socioeconomic barriers to the use of the nutrient waste streams from biomass thermal conversion (ash) and anaerobic digestion (digestate) as sustainable soil amendments for use in place of traditional fertilisers. It is argued that whilst the ability of combined ash and digestate to remedy many threats to ecosystems and provide a market to incentivise the renewable bio-energy schemes is promising, a step-change is required to alter perceptions of ‘waste’, from an expensive problem, to a product with environmental and economic value. This can only be achieved by well-informed interactions between scientists, regulators and end users, to improve the spread and speed of innovation with this sector.  相似文献   

14.
We can enhance our quality of life and reduce environmental impacts by making improvements in textile product design. By thinking about the environment when we design, choose and use technology, we can play an important part in building a better world for the future. If we are going to live in a sustainable way, the technology that we use has to be sustainable.

This paper provides an insight into how the design of textile products could provide for a more sustainable future. It describes a design concept for an ecological relaxing textile that uses photovoltaic cells to collect and store solar energy and to power an electronic relaxing system. This design may help improve our quality of life now and in the future.

The raw materials and processes, the electronic devices and the dimensions of solar energy for this application are analysed from an environmental perspective. The solar relaxing textile can facilitate our daily life by providing increased comfort and well being, and also acts as an indirect message to use renewable energy within textile support, in order to preserve our ecology.  相似文献   

15.
This review provides an innovative approach of treating palm oil mill effluent (POME) from open pond and closed anaerobic sludge reactor for generation of green energy in the form of biogas containing methane. Improper techniques for the treatment and management of POME produce hazards to people and contribute to global warming. In all over the world, the total crude oil palm production in the countries like Malaysia, Indonesia, Africa, Latin America, Asian countries, Solomons and other were around 51, 31, 7, 6, 3, 2 and 1% compared with soya 41.8% and coconut 3.48%, respectively. In the year 2014–15, Malaysia generated at least 87.8 million tonnes of palm effluent per year. Various studies reveal that about 80% of palm effluent is disposed off partially treated in open dumps. The generated certified emission reductions (CERs) estimated and favoured the treatment of POME in anaerobic reactor by replacing open lagoon of aerobic system for cleaner production. The clean development mechanism (CDM) encourages the utilisation of upflow anaerobic sludge blanket reactors for POME treatment and methane capture to earn CER credits as a source of revenue.  相似文献   

16.
Hybrid energy systems are renewable energy system combined in a complementary fashion to ensure dependable power supply at competitive cost. Diesel generators (DGs) are also added here as a back-up source of supply. For remote areas far from a transmission grid, these systems can provide a reliable and cost-effective supply. Addition of DG could instigate environmental pollution in such remote unpolluted areas. In the present work, optimal sizing of hybrid energy system has been attempted for a remote village cluster of Uttarakhand (India) to make available desired power supply at minimum environmental effluence. Hybrid Optimization Model for Electrical Renewable (HOMER) software from National Renewable Energy Laboratory, USA has been employed to attain the objective. The software offered several feasible systems, ranked on the basis of net present cost (NPC). All such systems are further analysed for emissions they have made in the environment. Hence, the optimal system fulfilling the criteria of minimal environmental degradation with sufficiently minimum NPC has been searched for. In the present work, the most appropriate system offered on the basis of NPC is the one which has five wind turbines (10 kW each), one DG (65 kW) and 25 batteries (6 V, 6.94 kW h each). The NPC of the system is $1,252,018, whereas its initial capital cost and levelised cost of energy (COE) are $94,233 and $0.292/kW h, respectively. After further analysis of all the feasible systems on the basis of environmental effluence, the most feasible system explored is the one which has minimal emissions of various pollutants such as carbon dioxide, carbon monoxide, hydrocarbon, particulate matter, sulphur dioxide and nitrous oxide. The system has been obtained on a compromised NPC of $1,270,921 with a capital cost of $148,133 and COE of $0.296/kW h. Components of the system include five wind turbines (10 kW), a 9 kW PV panel and a 65 kW DG along with 30 batteries (6 V, 6.94 kW h each). The system so obtained would prove to be a feasible, optimally sized and sustainable power supply alternative for remote unelectrified hilly rural area.  相似文献   

17.
Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.  相似文献   

18.
互花米草厌氧发酵产沼气研究进展   总被引:1,自引:0,他引:1  
互花米草是国家环保总局首批公布的十大外来生物入侵物种之一,也是唯一的海岸盐沼植物。由于生长速度快、繁殖能力强、生物量大以及不占用耕地等特点,是发展生物质能源的优良物种。通过厌氧发酵将其转化为沼气,不但可以控制互花米草过度生长繁殖,解决其资源化问题,每年还可获得数量不菲的沼气,符合可持续发展的要求。将近年来互花米草厌氧发酵产沼气方面的研究进行了归纳和总结,主要包括互花米草特性、厌氧发酵产沼气的优劣势、可行性及相关研究进展以及今后的研究重点和展望,厌氧发酵产沼气研究进展包括直接发酵、过程控制、预处理、混合发酵和深度气化利用。互花米草中钠抑制的消除、机械收割、厌氧发酵工艺、相关工程技术设备以及能源化利用长效运行管理机制等将是今后互花米草能源化利用研究的重点  相似文献   

19.
Secondary arsenic minerals in the environment: A review   总被引:1,自引:0,他引:1  
Information on arsenic (As) speciation in solid materials is critical for many environmental studies concerned with As stability and/or mobility in natural As-impacted soils and mining or industrial sites contaminated by As. The investigation of these systems has provided evidence for a number of secondary As minerals that have often played a significant role in As mobility in the solid phase–water system. This paper presents a list of environmentally important secondary As minerals in contaminated soil and waste systems, summarizes the information about their origin, occurrence, environmental stability and thermodynamics, and proposes several important avenues for further investigation.  相似文献   

20.
In light of rising cost of fossil fuels and fears of its depletion, coupled with the increase in energy demand and the rise in pollution levels, governments worldwide have had to look at alternative energy resources. Combining renewable energy generation like solar power with superior storage and conversion technology such as hydrogen storage, fuel cells and batteries offers a potential solution for a stand-alone power system. The aim of this paper was to assess the techno-economic feasibility of using a hybrid energy system with hydrogen fuel cell for application in an eco-house that will be built in Sultan Qaboos University, Muscat, Oman. Actual load data for a typical Omani house of a similar size as the eco-house was considered as the stand-alone load with an average energy consumption of 40 kW/day and 5 kW peak power demand. The National Renewable Energy Laboratory's Hybrid Optimisation Model for Electric Renewable software was used as a sizing and optimisation tool for the system. It was found that the total annual electrical energy production is 42,255 kW and the cost of energy for this hybrid system is 0.582 $/kW. During daylight time, when the solar radiation is high, the photovoltaics (PV) panels supplied most of the load requirements. Moreover, during the evening time the fuel cell mainly serves the house with the help of the batteries. The proposed system is capable of providing the required energy to the eco-house during the whole year using only the solar irradiance as the primary source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号