首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of certain environmental factors on the flux of selenium through marine biota has been studied, using Mytilus galloprovincialis and Lysmata seticaudata as test organisms of commercial interest. Over a selenium concentration range in sea water spanning 3 orders of magnitude, bioaccumulation of selenium by mussels was strongly dependent upon the ambient selenium concentration in sea water. Mussels accumulated Se (+4) to a much greater extent than Se (+6) and bioaccumulation was dependent upon temperature and mussel size. The presence of varying amounts of mercury did not significantly alter selenium uptake kinetics in mussels. Shrimp accumulated selenium to a lesser degree than mussels, the difference in concentration factors being due to the large amount of sorbed isotope lost with shrimp molts. Once incorporated, selenium was lost more rapidly from shrimp than from mussels. Temperature influenced selenium loss from mussels but did not alter the elimination rate in shrimp. Neither the chemical form of selenium nor mercury concentration in the organism affected loss of selenium from mussels. Elimination of selenium from shrimp was dependent upon the route of uptake; more rapid loss was noted from individuals which had absorbed the isotope directly from water than from those which had accumulated selenium via the food chain. In general, long-term selenium turnover rates were quite similar for both species; biological half-times ranged from 58 to 60 days for shrimp and 63 to 81 days for mussels. In the case of mussels, turnover rates measured in animals maintained in the laboratory differed somewhat from those determined from individuals held in field enclosures. Observed variations in flux rate may have been due to differences in food availability in the two experimental systems.Based on a communication given at the International Symposium on Interaction Between Water and Living Matter, Odessa, USSR, 6–10 October, 1975.  相似文献   

2.
Comparisons were made of the accumulation of a polychlorinated biphenyl (PCB) mixture from sediments and from water by the benthic worm Nereis diversicolor. Uptake from sediments was dose-dependent, attaining equilibrium concentration factors of approximately 3 to 4 after 2 months. Subsequent PCB elimination rates were concentration-dependent, with higher initial loss rates evident in the worms containing higher levels of PCBs. Accumulation of PCBs from water was much more rapid; concentration factors reached approximately 800 after only 2 weeks. Estimates were made of the relative importance of sediments and water as a source of PCBs to worms exposed to these contaminants in the natural environment. Calculations based on experimentally derived PCB concentration factors and ambient PCB levels in sediments and water suggest that compared to water, sediments contribute the bulk of these compounds to the worms. The possible mechanisms involved in the uptake of sediment-associated PCBs are discussed.  相似文献   

3.
Desiccation enhanced nitrogen uptake rates in intertidal seaweeds   总被引:4,自引:0,他引:4  
Desiccation increased nitrate and ammonium uptake rates upon resubmergence in late summer populations of the intertidal macroalgae Gigartina papillata (C.Ag.) J.Ag., Enteromorpha intestinalis (L.) Grev., Fucus distichus L., and Pelvetiopsis limitata (Setch) Gardn. The ratio of nitrogen uptake rates in desiccated plants to rates in hydrated plants (controls) was correlated with the position of the species in the intertidal zone. Gracilaria pacifica Abbott., the species occurring at the lowest shore level, showed no enhancement of nitrogen uptake following desiccation. The high intertidal species such as P. limitata and F. distichus showed a two-fold enhancement of nitrate and ammonium uptake following more extensive desiccation (>30%) and continued uptake even following severe desiccation (50 to 60%). After the plants had been desiccated, the increase in nitrate uptake rates upon submergence lasted much longer than a similar enhancement of ammonium uptake. The duration of the enhanced nitrate uptake was similar to the time required for total rehydration but the uptake rates were not related to the state of rehydration. The potential contribution that this enhanced nitrogen uptake following desiccation could make to total nitrogen procurement for growth is discussed. The experiments were carried out in 1979 or 1980 and repeated in 1981.This paper is dedicated to Dr. R. F. Scagel on the occasion of his retirement for his outstanding contribution to phycology  相似文献   

4.
Studies concerning bioaccumulation kinetics and bioconcentration factor (BCF) of heavy metals like zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), and copper (Cu) in earthworm Eudrilus eugeniae tissues including integument, gizzard, clitellum, and head region were undertaken. Calculated BCF, predicted K ow, and predicted K oc showed a significant correlation between heavy metals in different earthworm tissues, in substrate spiked with heavy metals. The regression coefficient (r 2) between heavy metal uptake concentration and exposure time varied between 0.73 and 0.99, indicating significant correlation. The K oc was a maximum of 13.9016 in case of Cu and integument at an exposure time of 100 days and a minimum of 0.1114 in case of Cr with respect to head at the same exposure time. Earthworms accumulated heavy metals following chronic exposure to municipal solid waste containing heavy metals. BCF and uptake rate kinetics of heavy metals were calculated and showed increased values in head tissue followed by integument.  相似文献   

5.
Vanadium-48 (as vanadate) was used to study the uptake, tissue distribution, depuration and food-chain transfer of vanadium through 3 species of echinoderms: the seastar Marthasterias glacialis L., the sea urchin Paracentrotus lividus Lmk. and the holothurian Holothuria forskali D.Ch.; all were collected from the littoral zone near Monaco. Uptake by all species was relativelyslow; after 3 wk exposure, isotopic equilibrium had not been reached and whole-body concentration factors ranged from 5 and 7 in the holothurian and sea urchin, respectively, to 18 in the seastar. Sixty-three to 77% of the incorporated radiotracer was associated with the body wall or test, suggesting surface sorption as the principal mechanism governing uptake from water. Stable vanadium measurements confirmed the preponderance of this element in the external hard parts of the echinoderms; however, concentration factors based on stable vanadium levels were significantly higher than those measured experimentally. Subsequent vanadium depuration rates were also species-dependent, with biological half-times for loss ranging from approximately 50 d in the sea urchin and holothurian to 123 d in the seastar. Food-chain transfer experiments indicated that seastars can assimilate and retain a large fraction of the vanadium ingested with food whereas sea urchins appear to lack this capability. The relative importance of the water and food input pathway in achieving vanadium levels in echinoderms is discussed in light of results of 48V distribution in experimental individuals and stable vanadium distribution in samples from the natural environment.  相似文献   

6.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

7.
The effect of light intensity on nitrate uptake by natural populations of phytoplankton was examined by 15N traceruptake experiments during the spring (March–May 1987) in Auke Bay, Alaska. The data were fit to a rectangular hyperbolic model which included a term for dark uptake. Three types of curves described nitrate uptake as a function of light intensity. The first (Type I) had a low half-saturation light intensity (K I), low chlorophyll-specific uptakes rates, no dark uptake and occasional photoinhibition. These were observed during a period of biomass decrease, accompanied by low daily light and strong wind, prior to the major bloom. The second type (Type II) had relatively high K I, high chlorophyll-specific uptake rates, and no dark uptake. Type II curves were observed during most of the period prior to nitrate depletion in the surface waters. Types I and II both appeared prior to nitrate depletion in the water and reflected variations in the light history of the phytoplankton population. The third type (Type III) occurred in nitrate-deplete conditions, when nitrate uptake was less dependent on light intensity (i.e., high rates of dark uptake and lower K I). Decreased light-dependency during this period was coupled with physiological nitrogen deficiency in the population. Comparing these parameters to those of photosynthetic carbon fixation, K Ivalues of nitrate uptake were generally higher than those of photosynthesis prior to nitrate depletion, and lower during nutrient-deplete conditions.  相似文献   

8.
Common mussels, Mytilus edulis (shell length 19 to 21 mm, average dry weight 30 mg) were maintained for 6 weeks in sea water containing different concentrations of lead (0.005 to 5 mg · l-1). The lead concentration in the mussels' whole soft parts was analysed at different times during the experiment. A constant rate of lead uptake, linearly dependent on the lead concentration of the medium, was observed. Thus, the temporal change of the concentration factor is also linear (regression coefficient 149.9 daily). Rate of lead loss, measured after transferring the mussels into natural sea water, is linearly dependent on the original lead concentration in the soft parts. Rates of uptake and loss in large mussels (shell length 45 to 55 mm, average dry weight 750 mg) are less than those in small mussels (shell length 19 to 21 mm, average dry weight 30 mg). During a much more extended experimental period, adjustment to a steady state is expected to occur; rates of lead uptake and loss are then non-linear. Lead uptake by individual organs (kidney, gills, adductor muscle, digestive gland, foot, mantle with gonads) of large M. edulis (shell length 45 to 55 mm, average dry weight 750 mg) was analysed in 2 test series. In the test series medium, the mussels were kept in a seawater medium containing 0.01 mg. Pb.l-1. In the test series food, the mussels were kept in natural sea water but fed with the green algae Dunaliella marina containing lead (approximately 600 g.g-1 dry weight). The lead quantity given per mussel per day was about 2 g in both test series. Within 35 days, the mussels of test series medium took up 29% of the total amount of lead given, those of test series food took up 23.5%. In all organs, lead concentration increased, but rates of uptake differed; the kidney displayed by far the highest rate of uptake. With these physiological properties M. edulis is an ideal indicator organism for lead pollution in the marine environment. A biologic calibration curve, the relationship between lead concentration in the mussels' whole soft parts at equilibrium and lead concentration in sea water, is presented.This paper forms part of a doctoral thesis in biology at Hamburg University  相似文献   

9.
The ability of the littoral porcelain crab Porcellana platycheles (Pennant) to recognise and avoid low-salinity levels when immersed in media has already been demonstrated in previous experiments. It was thought that the ability to identify and avoid diluted sea water before complete immersion would also be of survival value, since this would prevent exposure of the permeable body surfaces (especially the gills) to the swelling effects of the osmotic uptake of water. The experiments reported here demonstrate that such pre-immersion salinity choice behaviour may be elicited from P. platycheles in the laboratory, and that salinity reception is apparently sited upon the walking limbs. Choice between salinity levels is shown to be based on the osmotic concentration of media rather than on the concentration of a particular ion or group of ions.  相似文献   

10.
Daytime observations on the isopods Idotea phosphorea and I. baltica and the amphipod Gammarus oceanicus held in laboratory microcosms showed that I. phosphorea and G. oceanicus spent 45% and 30% respectively, of their active time feeding on dead, intact eelgrass leaves which had been recently released from plants. I. baltica spent 41% of its active time consuming intact green leaves. The shredding of intact dead leaves by I. phosphorea and G. oceanicus resulted in production of small detrital particles which were liberated from the faeces of the invertebrates and this type of feeding led to the breakdown of whole leaves. Field experiments which separated the effects of shredding by invertebrates and grinding by waves and ice on the loss of weight from leaf packs showed that relative to controls isopods significantly increased weight loss from dead leaves. Loss of weight from leaf packs exposed to both biotic and physical shredding forces was not significantly different from that found on those exposed only to shredding by isopods. However, trends in the data indicated that fragmentation of whole, dead leaves in the field probably is a result of the synergistic effects of shredding by invertebrates and physical factors, particularly ice grinding. The role played by invertebrates in fragmenting intact, dead leaves is discussed in the light of energy flow and nutrient cycling within seagrass systems.  相似文献   

11.
Using radio-isotopes, the turnover rates of sodium, chloride, water, and urea were measured, at different salinities, in the pyjama shark, Poroderma africanum (Gmelin). The exchangeable ionic space was also measured. Sodium turnover was 0.24%/h in normal sea water (467 mM Na/l, 550 mM Cl/l, 1020 m0sm/l), and under similar conditions, chloride, water and urea showed turnover rates of 2.47, 97, and 0.08%/h, respectively. Chloride and water turnover showed maximal values in normal sea water, and declined with variation of the medium away from this salinity, the decline in chloride turnover rate being more marked. Exchangeable ionic space was calculated, using Chloride-36, and was found to be 34.4% body volume or 32.4 ml/100 g fresh weight. Present results show that chloride turnover is about 10 times that of sodium; a relationship previously observed in other elasmobranchs. Water turnover rates are similar to those of other elasmobranch species, although urea turnover is somewhat lower. Salinity has a pronounced effect upon chloride and urea turnover rates.  相似文献   

12.
Absorption of 14C-glycine from ambient sea water across the body surface of the oligochaete Enchytraeus albidus Henle was, after 6 h preincubation, significantly reduced in the presence of 0.1 to 0.15 ppm mercury, 0.25 ppm copper, 1.5 ppm silver, and 2 ppm cadmium. Addition of heavy metal salts reduced maximum uptake rates (V max ), without affecting transport constants (K t ). Influx of 14C-glycine remained unchanged in the presence of up to 10 ppm aluminium, chromium, iron, lead, molybdenum, vanadium, and zinc. Effects of up to 150 ppm nickel, manganese, cobalt and selenium were negligible. Inhibition of glycine absorption by mercury and cadmium in the polychaete Nereis diversicolor Müller is almost identical with results presented for E. albidus. Transintegumentary solute absorption in soft-bodied marine invertebrates obviously represents a suitable biological function for studies on heavy metal toxicity. The close relationship between rates of heavy metal absorption, inhibition of transintegumentary glycine uptake, and acute toxicity is discussed.  相似文献   

13.
Social experience can elicit phenotypically plastic changes in mate choice, but little is known about the degree to which social information from one modality can influence mating decisions based on information from a different modality. I used the field cricket Teleogryllus oceanicus to test whether experience of chemical cues mimicking a high density of sexually mature males causes changes in mate choice based on acoustic signals. T. oceanicus males produce long-range calling songs to attract females for mating, but they also produce waxy, non-volatile hydrocarbons on their cuticle (CHCs) which, when deposited on a substrate, can be detected by females and may provide demographic information. I manipulated female experience of substrate-bound male CHCs and then performed acoustic mate choice trials. When CHCs were present on the substrate during trials, females showed greater motivation to respond to male calling song. This effect diminished with repeated exposure to male songs, demonstrating that the importance of olfactory cues in altering acoustic mate choice decreased with increasing exposure to acoustic signals. However, the temporal nature of CHC experience mattered: previous experience of CHCs did not alter subsequent female choice for male calling song traits. Exposure to male song increased the threshold of mate acceptance over time, and individuals varied considerably in overall levels of responsiveness. Taken together, the results demonstrate that mate choice is dependent on social context mediated by multiple modalities in T. oceanicus, but they do not support the idea that prior experience of social cues in one modality necessarily influences later mating decisions based on other signalling modalities.  相似文献   

14.
Uptake of 233Pa from sea water by mussels Mytilus galloprovincialis L. and shore crabs Carcinus mediterraneus Csrn. was studied. Results indicate a high contamination factor in digestive tract, gills and skeleton of both investigated species and an increment of the contamination factor in mussel byssus. In spite of this, reproductive system, muscle and hemolymph were only negligibly contaminated. The presence of complexone EDTA in sea water has no effect on uptake of 233Pa in the animal tissues tested.  相似文献   

15.
Chitinases are involved in defense against chitinaceous pathogens in both invertebrates and vertebrates. This study investigated whether sea fan corals, Gorgonia ventalina (Linnaeus) collected from the Florida Keys between the summer of 2002 and the summer of 2005 contain chitinases, and whether these enzymes could serve an analogous protective role against the fungal pathogen, Aspergillus sydowii (Thom et Church). Crude extracts of healthy sea fans contained detectible levels of exochitinase activity in an in vitro microplate assay using fluorogenic substrates. The exochitinase levels decreased upon injury, agitation, or manipulation of the tissue. A concurrent, transient increase of exochitinase in the surrounding water suggests that sea fans release chitinases as a response to these stresses. By contrast, endochitinase was detected in only 2 of 15 sea fans (13%), suggesting a high degree of variation for this enzyme. Sea fan chitinase-containing seawater and anion exchange chromatography fractions were both active against A. sydowii in an absorbance-based antifungal assay. The presence of chitinases in sea fan extracts, their release into the surrounding water upon stress, and their activity against A. sydowii suggests that further study of these enzymes in coral stress responses is warranted.  相似文献   

16.
The myosin ATPase activity of the flexor muscle of an estuarine crab, Scylla serrata, was studied in relation to salinity adaptation. The enzyme is activated more by calcium than by magnesium; it exhibits maximum activity at pH 9.0, and substrate inhibition above 0.5 mM ATP. The enzyme activity increases in crabs adapted to higher salinities. The enzyme from normal (70% sea water) crabs shows two pH optima; one at pH 7.0, the other at pH 9.0. The neutral optimum shifts to pH 6.0 upon adaptation to full strength sea water, but disappears upon adaptation to 25% sea water. The enzyme from normal crabs shows an optimum at 30 °C; adaptation to full strength sea water raises this optimum to 38 °C, whereas adaptation to 25% sea water decreases it to 24 °C. These changes are discussed in relation to estuarine conditions.  相似文献   

17.
J. B. Lewis 《Marine Biology》1976,36(2):147-150
The ability of 15 species of Atlantic reef corals to act as suspension feeders was demonstrated by their removal of suspended particles from sea water in culture vessels. Mean clearance rates varied from 16.6 to 145.5 ml water cleared/h/cm2 of live coral tissue. The lowest rates was found in Porites porites which is primarily a tentacle feeder, and the highest in Diploria clivosa which acts as both a tentacle feeder and suspension feeder. Rates of particle clearance in Agaricia agaricites, which is primarily a suspension feeder, were influenced by current velocity and type of food.  相似文献   

18.
The amount of copper taken up via algae and water byMacoma balthica from the Oosterschelde sea arm, S.W. Netherlands, was established using the radioisotope64Cu. As far as we know, this isotope has never been used before in marine flod chain studies. As a model food source the marine diatomPhaeodactylum tricornutum was allowed to accumulate64Cu for 1 d. These labelled algae were fed to the clams in the presence of the complexing agent EDTA (0.27mM). EDTA was added to prevent uptake of dissolved64Cu that could be leaking from the labelled diatoms. In control experiments, unlabelled diatoms were fed toM. balthica in the presence of dissolved64Cu (with and without EDTA) in order to assure a similar filtration activity. In repeated experiments with varying particulate/dissolved copper ratios, uptake through food always turned out to be at least as efficient as uptake from the water. It was concluded that Cu, associated with food, is well available for uptake byM. balthica.  相似文献   

19.
Radiotracers were used to study processes controlling the accumulation and elimination of vanadium in the Mediterranean mussel Mytilus galloprovincialis. Vanadium uptake rates varied inversely with both salinity and vanadium concentration in water, but were independent of temperature. After a 3 wk exposure to 48V, the highest concentration factors were found in the byssus (1900) with much lower values computed for shell ( 70) and soft tissues (5). More than 90% of the total 48V accumulated was fixed to shell, suggesting that uptake is primarily a result of surface sorption processes. Much of the vanadium in shell was firmly bound to the periostracum and was not easily removed by acid leaching. Food-chain experiments indicated that the assimilation coefficient for ingested vanadium is low (7%) and that the assimilated fraction is rapidly excreted from the mussel. These findings coupled with knowledge of in situ and experimentally-derived vanadium concentration-factors have allowed a preliminary assessment of the relative importance of the food and water pathways in the contamination of mussels under conditions of acute and chronic exposure. Contaminated mussels transferred to clean sea water lost 48V at rates that depended upon temperature but were largely unaffected by either salinity or by vanadium levels in mussel tissues. Total vanadium depuration was slow and was governed by loss from a slowly-exchanging compartment with a characteristic half-time of about 100 d. Individual mussel tissues were analyzed for stable vanadium and the possibility of using these tissues, particularly the byssus, as bioindicators of ambient vanadium levels in the marine environment is also discussed.  相似文献   

20.
The transport of eel early life stages may be critical to their population dynamics. This transport from ocean spawning to freshwater, estuarine and coastal nursery areas is a combination of physical and biological processes (including swimming behavior). In New Jersey, USA, the American eel (Anguilla rostrata) enters estuaries as glass eels (48.7–68.1 mm TL) in contrast to the Conger eel (Conger oceanicus) that enters as larger (metamorphosing) leptocephali (68.3–117.8 mm TL). To begin to understand the mechanisms of cross-shelf transport for these species, we measured the potential swimming capability (critical swimming speed, U crit) under ambient conditions throughout the ingress season. A. rostrata glass eels were collected over many months (January–June) at a range of temperatures (4–21°C), with relative condition declining over the course of the ingress period as temperatures warmed. C. oceanicus occurred later in the season (April–June) and at warmer temperatures (14–24.5°C). Mean U crit values for A. rostrata (11.7–13.3 cm s−1) and C. oceanicus (14.7–18.6 cm s−1) were comparable, but variable, with portions of the variability explained by water temperature, relative condition, ontogenetic stage, and fish length. Travel times to Little Egg Inlet, New Jersey, estimated using 50% U crit values, indicate it would take A. rostrata ~30 and ~60 days to swim from the shelf edge and Gulf Stream, respectively. Travel times for C. oceanicus were shorter, ~20 days from the shelf edge, and ~45 days from the Gulf Stream. Despite differences in life stage, our results indicate both species are competent swimmers, and suggest they are capable of swimming from the Gulf Stream and/or edge of the continental shelf to estuarine inlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号