首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以正硅酸乙酯为硅源、十二胺为模板剂制备中孔硅HMS-1,采用焙烧和乙醇萃取的方法去除其模板剂,所得材料分别为HMS-2与HMS-3,并将四乙烯五胺(TEPA)与二乙醇胺(DEA)混合负载于3种材料上,采用X射线衍射(XRD)、傅里叶红外(FTIR)与氮气吸附实验对材料进行表征,研究改性前后的HMS对常压下低浓度CO2的吸附性能及再生能力.XRD与FTIR结果表明,TEPA与DEA已被成功负载到HMS孔道内.氮气吸附实验表明,保留模板剂和胺基改性后,材料的孔容显著降低.20℃下,初始浓度为10%的CO2在材料上的吸附量顺序为:MA-HMS-1(3.29mmol/g) > MA-HMS-3(2.7mmol/g) > HMS-1(1.88mmol/g) > MA-HMS-2(1.65mmol/g) > HMS-2(1.33mmol/g),模板剂的存在,不仅增加了CO2的吸附位点,还对混合胺改性的HMS吸附CO2起到了协同作用.在20~75℃范围内,MA-HMS-1与MA-HMS-3受温度影响最明显,65℃时吸附量达最大值;随着温度的升高,HMS-1的吸附量随温度升高持续降低;MA-HMS-2的吸附量基本不变.含胺基的4种材料(HMS-1、MA-HMS-1、MA-HMS-2与MA-HMS-3)在80℃下拥有优良的再生性能,经4次循环再生后,MA-HMS-1的再生率为97.5%,高于MA-HMS-2(83%)和MA-HMS-3(84%),保留HMS的模板剂对材料的再生性能有明显促进作用.  相似文献   

2.
29种湿地填料对氨氮的吸附解吸性能比较   总被引:3,自引:0,他引:3       下载免费PDF全文
为筛选出性能更好的人工湿地填料,采用等温吸附-解吸试验,测定了29种天然和非天然人工湿地填料的孔隙率、渗透系数及其对NH3-N的吸附-解吸特性. 结果表明:锯末、瓷砖、鸡蛋壳、瓷砂陶粒、火山岩等材料的孔隙率较大,瓷砂陶粒、海绵铁、石灰石、页岩陶粒、砾石等材料的渗透系数较大;Freundlich和Langmuir等温吸附方程能较好地拟合各填料对NH3-N的吸附特征,通过Langmuir等温吸附方程计算,对NH3-N的理论饱和吸附量居前5位的填料依次是火山岩(1.700 0 mg/g)、瓷砂陶粒(1.620 0 mg/g)、生物炭(1.353 0 mg/g)、沸石(1.350 0 mg/g)、石榴石(1.190 0 mg/g). 吸附速率的变化与填料吸附NH3-N的途径密切相关. 吸附饱和的生物炭、焦炭、大理黏土、沸石、磁铁矿、石英砂主要通过离子交换作用吸附NH3-N,稳定性好,解吸率均小于20%;瓷砂陶粒和火山岩对NH3-N的解吸率分别为24.50%和35.51%,既有物理吸附也有离子交换作用. 火山岩、瓷砂陶粒、生物炭、沸石对较高浓度NH3-N的吸附效果较好. 研究显示,火山岩、生物炭、瓷砂陶粒、沸石等适合作为人工湿地中吸附NH3-N的填料.   相似文献   

3.
文章以油葵茎秆为原材料,采用缺氧升温热解法制备300、400、500、600、650℃的生物炭,利用FTIR、SEM、BET对生物炭进行表征,结果发现,随炭化温度升高,生物炭的含氧官能团数减少,比表面积增大,孔隙结构更加丰富。在650℃制备的生物炭具有最丰富的孔隙结构,比表面积最大,达到321.730 7 m2/g。吡啶吸附实验结果表明,650℃制备的生物炭(Y650)的吸附性能最佳,吡啶饱和吸附量达到33.64 mg/g。相同条件下,H2SO4改性油葵茎秆后制备的生物炭(YS650)对吡啶的饱和吸附量提高了6%,达到35.66 mg/g。Y650和YS650对吡啶的吸附结果表明,当吡啶初始浓度100 mg/L、生物炭添加量4 g/L、pH=7,吸附12 h后,Y650和YS650对吡啶的吸附达到平衡,饱和吸附率分别达到67.29%和73.35%。  相似文献   

4.
采用溶剂热法,制备金属有机骨架(MOFs)材料MIL-101(Fe)吸附去除水中的NO3-,利用Box-Behnken响应面法对MIL-101(Fe)的合成条件进行了优化,设定FeCl3投加量、TPA投加量及合成时间3个影响因素,建立了NO3-吸附量与各因素之间的二次多项式模型,确定了MIL-101(Fe)的最优合成条件,并利用SEM-EDS、FTIR和BET等方法对吸附材料进行了表征.同时,通过静态吸附实验,探究了MIL-101(Fe)投加量、吸附时间、溶液pH值对材料吸附性能的影响.结果表明,MIL-101(Fe)吸附NO3-的最优条件为:MIL-101(Fe)投加量0.2 g,pH=8.0,温度15℃,NO3-初始浓度30 mg·L-1,吸附时间120 min,在此条件下NO3-的吸附量为12.12 mg·g-...  相似文献   

5.
通过微波合成技术制备磁性共价三嗪骨架材料(MCTF).利用SEM、TEM和FTIR对其形貌特征和表面基团进行表征分析;测定分析其微观介孔结构与饱和磁化强度;并将合成的MCTF用于活化过一硫酸盐(PMS)降解磺胺甲恶唑(SMX).研究了MCTF/PMS体系降解SMX的主要影响因素,包括MCTF投加量、PMS浓度、pH值、无机离子.研究表明:在MCTF投加量0.3g/L,PMS浓度1.50mmol/L,SMX初始浓度0.05mmol/L的室温条件下,30min内SMX的降解率可达100%.随pH值升高,SMX的降解率随之降低.SO42-与HCO3-对SMX的降解具有抑制作用,Cl-则具有双重作用.循环试验证明MCTF具有良好的重复利用性能.MCTF/PMS体系中降解SMX的活性物质为硫酸根自由基(SO4-·)和羟基自由基(·OH),并主要在催化剂表面生成反应;通过UHPLC-MS/MS对SMX的降解途径与产物进行推测分析.  相似文献   

6.
水热碳化作为废弃生物质资源化利用的新兴工艺技术,可弥补我国城市污泥资源化处理方式的不足。实验研究了反应温度和时间对污泥水热产物性质的影响,并探究了水热炭通过KOH改性后对溶液重金属的吸附性能。结果表明:提高温度和延长时间有利于提升水热炭稳定程度与吸附性能;综合考量吸附效果与制备成本,确定水热碳化反应温度220℃和反应时间1 h为最佳反应条件;水热炭活化后对溶液中铜和镉的吸附性能良好,饱和吸附量分别达到49. 89,52. 04 mg/g,吸附过程可用Lagergren伪二级动力学模型和Langmuir/Freundlich吸附等温模型进行较好地拟合。  相似文献   

7.
以粉煤灰(FA)为原料水热合成了不同铝硅物质的量比(Al/Si)的介孔铝取代托贝莫来石(TFA).采用X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)、场发射环境扫描电子显微镜(SEM)、比表面孔径分析仪和傅里叶变换红外光谱仪(FTIR)对FA及制备的TFA的理化性质进行表征.结果表明,TFA1(Al/Si=0.4)的比表面积、孔隙体积和平均孔径分别为74.30m2/g、0.4495cm3/g和24.20nm,TFA2(Al/Si=0.1)的分别为99.48m2/g、0.5218cm3/g和20.98nm,均远高于FA的1.77m2/g、0.004338cm3/g和9.79nm.FA、TFA1和TFA2对Cd2+的吸附动力学数据更加符合伪二级动力学模型.Langmuir等温线模型可以更好地描述Cd2+的吸附等温线,TFA1对Cd2+的饱和吸附量为205.76mg/g,远高于FA和TFA2的...  相似文献   

8.
文章采用碱熔融水热法合成了X型粉煤灰沸石,通过XRD、XRF、SEM、氮气吸附等手段研究了该沸石的结构组成特点,考察了初始浓度、吸附温度和空速对X型粉煤灰沸石吸附丙酮的影响机制,在此基础上,进一步研究了X型粉煤灰沸石对丙酮的吸附动力学及吸附机理。结果表明:合成的X型粉煤灰沸石品质较高,平均粒径为0.83μm,平均孔径为3.2 nm,比表面积为165.8 m2/g,总孔容积为0.133 8 cm2/g,总孔容积为0.133 8 cm3/g;X型粉煤灰沸石吸附丙酮的过程中,初始浓度、空速和温度越高,穿透时间和饱和时间越短;在实验范围内,升高温度会导致吸附量显著降低,增加空速会使吸附量略有下降,而增加初始浓度会使吸附量明显增加,当温度为40℃,初始浓度为777.9 mg/m3/g;X型粉煤灰沸石吸附丙酮的过程中,初始浓度、空速和温度越高,穿透时间和饱和时间越短;在实验范围内,升高温度会导致吸附量显著降低,增加空速会使吸附量略有下降,而增加初始浓度会使吸附量明显增加,当温度为40℃,初始浓度为777.9 mg/m3,空速为75 h3,空速为75 h(-1)时,X型粉煤灰沸石对丙酮具有最高的吸附量;Bangham模型和准一阶模型能更好地拟合丙酮在X型粉煤灰沸石上的吸附过程,说明丙酮在X型粉煤灰沸石表面的吸附更符合以物理吸附为主的孔道吸附。  相似文献   

9.
采用超声共沉淀法制备羟基磷灰石(HAP),用海藻酸钙固定羟基磷灰石制得吸附剂(SA/HAP-1.5),考察SA/HAP-1.5吸附剂对Pb2+吸附性能。研究结果表明,当Pb2+初始质量浓度分别为1000 mg/L、1200 mg/L和1500 mg/L,pH=6.0,SA/HAP-1.5投加量为2 g/L,吸附时间为60 min时,吸附量分别为508.89 mg/g、615.53 mg/g、766.79 mg/g。SA/HAP-1.5对Pb2+的吸附过程符合准二级动力学模型和Langmuir等温吸附模型,吸附主要为单分子层的化学吸附。热力学模型拟合得ΔH为19.98 kJ·mol-1,ΔS为157.57 J·mol-1·k-1,吸附是自发过程。SA/HAP-1.5经过4次再生循环使用依然表现出优异吸附性能。  相似文献   

10.
利用聚乙烯醇、膨润土包埋固定一种广泛分布的荒漠丝状蓝藻——具鞘微鞘藻,通过正交试验考察了聚乙烯醇(PVA)、膨润土、蓝藻藻粉和交联时间等用于复合材料制备的最佳参数配比,并研究了这种复合材料对Cu2+的吸附特性.结果表明,PVA-膨润土-蓝藻复合固定化小球(MIBB)最佳制备条件为PVA 8%、膨润土2%、蓝藻3 g·L-1、交联时间12 h,此条件下吸附率高达99.12%.单因素吸附实验表明,MIBB吸附Cu2+的最佳条件为投加量4%、pH 5.5、温度30℃,MIBB对Cu2+的吸附率随着Cu2+初始浓度的增加而降低,吸附量则随Cu2+初始浓度的增加而升高;整个吸附过程可分为快速吸附(前8 h)和慢速积累与吸附平衡(8~24 h)两个阶段.相比于蓝藻小球(CB)、膨润土小球(BB)和空白对照小球(CKB),MIBB对Cu2+具有更好的吸附性能.吸附等温模型拟合发现,MIBB对Cu2+的吸附符合Langmuir、...  相似文献   

11.
为了进一步提升多孔碳材料的吸附性能,以海藻酸钠(SA)为碳前驱体、K2CO3为活化剂、三聚氰胺为氮掺杂剂,通过一步法实现同步活化氮掺杂海藻酸钠基多孔碳材料(SAC/N)的制备,研究了掺氮比对多孔碳吸附性能的影响.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等方法对样品进行了表征.结...  相似文献   

12.
以山西褐煤为原材料制备黑腐酸,选择吸附温度、时间、pH值、黑腐酸用量和Cd2+初始浓度5个影响因素,采用Box-Behnken响应面法对吸附条件进行优化,分别建立黑腐酸对Cd2+的吸附容量和吸附率的二次多项式模型,确定最优吸附条件.将吸附过程拟合等温吸附方程,进行热力学分析,并对材料进行表征.结果表明,pH值、黑腐酸用量和底物浓度为黑腐酸吸附Cd的显著影响因素,优化后的条件为温度308K、时间107.82min、pH=5.55、黑腐酸用量0.05g,底物浓度95.56mg/L,表明黑腐酸是一种良好的吸附材料,吸附效果随温度的升高而增大,能够处理高浓度重金属污染.吸附过程符合Langmuir模型,308K下最大吸附量为54.20mg/g;热力学分析得ΔG0 < 0、ΔH0 > 0、ΔS0 > 0,即反应是自发的吸热熵增反应;黑腐酸表面粗糙多孔,具备良好的比表面积与孔隙结构,具有多种官能团,吸附反应有羟基、羧基等参与形成氢键,并与无机矿物发生离子交换.本研究可为揭示黑腐酸对重金属的吸附机理提供理论依据.  相似文献   

13.
可降解微塑料对铜和锌离子的吸附解吸特性   总被引:1,自引:0,他引:1  
为了评估可降解微塑料对共存污染物的载体效应,对可降解微塑料PLA(聚乳酸)对重金属污染物(Cu2+、Zn2+)的吸附和解吸行为进行了探究,同时选择常规微塑料PP(聚丙烯)进行对照实验.在紫外老化过程中,微塑料(MPs)均表现为表面出现裂纹、凹坑,比表面积增大,负电荷增多,含氧官能团强度增强,亲水性增强.较之PP,PLA在紫外老化过程中理化性质的改变尤为明显.老化后MPs的吸附能力远大于老化前,老化PLA对Cu2+的最大吸附量可达5.56mg/g,约为新制PLA(2.27mg/g)的2.5倍;老化前后PLA对重金属的吸附量均高于PP.解吸实验表明,老化后MPs对重金属的解吸率均低于老化前,而老化前后PLA对Cu2+、Zn2+的解吸量及解吸率均高于PP.较之胃液环境,老化前后MPs对金属离子的解吸更易在肠液环境中进行.说明PLA相对于PP对重金属具有更强的载体作用,且PLA更容易将重金属污染物释放到人体内,进而对人体健康造成威胁.  相似文献   

14.
将市政生物污泥资源转化与吸附制冷能效提升相交叉融合,通过炭素前驱体进行复配、KOH催化炭化及磷酸催化活化相结合的压块炭改进工艺对污泥基活性炭的孔结构进行原位调控,制备了4种新型污泥基活性炭(WNC-4/3/2/1);对比研究了以污泥炭和甲醇制冷剂为工质对的吸附制冷床的吸附/脱附循环、制冷量及制冷功率变化特性.结果表明: KOH和磷酸浸渍过程可分别促进微孔及中孔结构的发育,WNC-4的总孔、微孔及中孔容积分别达到0.6960,0.1641和0.5319cm3/g.比表面积与孔结构容积水平的同步提升与甲醇制冷剂吸附/脱附量呈良好的相关性(R2>0.90).基于Langmuir吸附等温模型(R2=0.9939)计算的最大吸附量QL*达到(552.67±23.83)mg/g;基于Sokoda-Suzuki方程计算的40min内的平衡吸附量和脱附量分别为(372.94±9.504)和(412.55±8.309)mg/g.脱附温度为100℃时,WNC-4吸附制冷系统的稳定脱附量、制冷量和制冷功率分别达到(328.81±10.74)mg/g,(300.34±9.81)kJ/kg和(600.68±19.62)kJ/(kg·h).  相似文献   

15.
采用3种不同的活性炭纤维,考察了VOCs种类、VOCs浓度以及床层温度对活性炭纤维吸附VOCs性能的影响,并采用电致热脱附技术进行再生研究.结果表明,甲苯浓度对吸附推动力影响较大,在高浓度下,可使吸附容量达到434.8mg/g.活性炭纤维吸附甲苯受温度影响较小,在60℃下仍然具有288.6mg/g的吸附容量.电致热脱附电压越大,活性炭纤维升温速率越快,脱附效率越高,经过100min即可完全脱附.经过4次吸脱附循环,活性炭纤维仍有较好的吸附效果,饱和吸附量能达到原有吸附量的80%以上.  相似文献   

16.
工程实践中Y分子筛在高湿度环境下吸附性能大幅降低,通过聚二烯丙基二甲基氯化铵(PDDA)预处理后进行mesoSiO2壳层生长得到Y@mesoSiO2,将聚二甲基硅氧烷(PDMS)通过化学气相沉积法接枝到Y@mesoSiO2壳层上,可获得疏水特性优异的Y@mesoSiO2-S核壳分子筛。采用SEM、TEM、XRD、XPS和比表面积及孔径分析仪对改性前后Y分子筛形貌和结构进行分析,通过静态和动态吸附实验评价其对水和甲苯的吸附性能。结果表明:mesoSiO2壳相在核相Y分子筛外表面成功生长,并将PDMS成功接枝在Y@mesoSiO2壳层后,Y@mesoSiO2-S的BET比表面积相比Y分子筛增加了2%;静态水蒸气吸附量从298 mg/g降至79 mg/g,动态水蒸气吸附量从245 mg/g降至76 mg/g,材料表面与水接触角得到显著提升。在RH80%时,Y@mesoSiO2-S和Y分子筛对甲苯的饱和吸附量分别为167...  相似文献   

17.
钢铁废水污泥吸附除磷特性   总被引:1,自引:0,他引:1  
为处理含磷废水同时实现钢铁污泥资源化利用,将钢铁污泥用于吸附除磷,从磷吸附影响因素、动力学模型、吸附等温线等方面研究了钢铁污泥对水中磷酸盐的吸附特性,并通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)等表征手段对吸附机理进行了探究.结果显示,钢铁污泥对水中磷具有优良的吸附性能,在pH=2.00,温度为40°C时,磷...  相似文献   

18.
以蒙东褐煤为原料,通过沉降炉炭化活化一步法制备了粉末活性焦(COKE),其具有丰富的孔隙结构,以微孔为主,占据比表面积的79.3%.考察了活性焦对水中磷酸盐的吸附性能,并进一步研究了吸附时间、温度、初始pH值、初始磷酸盐浓度、活性焦投加量和共存离子对吸附过程的影响,以及吸附动力学、吸附等温线和热力学特征.结果表明:活性焦对水体中的磷酸盐具有良好的吸附性能.在30℃,pH=7的条件下,利用20.00g/L活性焦吸附1mg/L磷酸盐溶液,60min即可达到吸附平衡,此时吸附率可达89.4%.当吸附温度越高(10~40℃),活性焦投加量越大,溶液pH值在6~7时,活性焦对水中磷酸盐的去除效果越好.共存离子的存在(NO3-、SO42-、CO32-)对活性焦吸附磷酸盐有抑制作用.活性焦对磷酸盐溶液的吸附过程较好符合Freundlich模型(R2>0.99)和准二级动力学模型(R2>0.99),最大吸附容量为1.746mg/g(30℃),并通过热力学分析发现此过程为自发的吸热反应.利用傅立叶红外光谱分析进一步表明,活性焦吸附磷酸盐主要依靠配位交换.与活性炭相比,活性焦性价比更高,具有良好的应用前景.  相似文献   

19.
针对污水厂尾水深度脱氮问题,以某地产天然沸石为原料,采用水热合成法制备了纯度较高、晶型规整、大小均一、吸附量大的A型分子筛.系统考察了其对氨氮的吸附及再生特性,并结合Zeta电位、FTIR以及XRD对其氨氮吸附与再生机理进行了分析.结果表明:准一级和准二级反应动力学均能较好地反映A型分子筛吸附氨氮过程,等温吸附过程符合Langmuir等温吸附模型,对氨氮的最大饱和吸附量为41.68mg/g;吸附饱和的分子筛再生利用方法简便易行,经2mol/L NaCl溶液解吸后能够恢复其吸附能力,5次吸附-解吸再生率均在95%以上;其吸附与再生过程均为Na+与NH4+的离子交换反应,吸附与再生互为可逆过程.该方法为污水厂深度脱氮提供了一条经济可行的新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号