首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以一硫代砷酸盐(monothioarsenate, MTA)为研究对象,查明其在针铁矿上的吸附特征,分析砷酸盐、亚砷酸盐、胡敏酸(humic acid,HA)、硝酸盐和磷酸盐对针铁矿吸附MTA的影响并识别作用机制.结果发现:①当溶液中仅有一种砷形态时,MTA、砷酸盐和亚砷酸盐在针铁矿上的吸附平衡时间分别为8、 2和4 h,吸附过程均符合假二级动力学模型,平衡吸附量(q_e)分别为2 129.851、 3 291.838和1 788.767mg·kg~(-1);当溶液中两种砷形态(砷酸盐与MTA,或亚砷酸盐与MTA)共存时,MTA在针铁矿上的吸附过程仍符合假二级动力学模型,但q_e显著减少,分别为1 236.941mg·kg~(-1)和1 532.287mg·kg~(-1),主要原因是砷酸盐和亚砷酸盐均能与MTA竞争吸附位点.②MTA在针铁矿上的q_e随着HA浓度(10~50 mg·L~(-1))的增加而逐渐降低,因为HA大量的官能团抢占了针铁矿表面吸附点位,从而抑制了MTA的吸附;③当溶液中添加磷酸盐时, MTA、砷酸盐和亚砷酸盐在针铁矿上的q_e显著降低,分别为492.802、 815.782和303.714mg·kg~(-1),这是因为P与As存在竞争性吸附;当添加硝酸盐时,溶液中电子受体数量和Eh增加从而使得3种砷形态的q_e均增大,分别为2 211.030、 3 444.023和1 835.537mg·kg~(-1).  相似文献   

2.
在实验室条件下合成纯度> 99%的MTA,开展不同pH和固液比条件下MTA在细砂、土壤沉积物和针铁矿这3种介质上的吸附实验,分析其吸附特征和作用机制.结果发现:①MTA质量浓度分别在0. 14~23. 59、0. 19~41. 27和0. 27~32. 02mg·L-1范围时,其在细砂、土壤沉积物和针铁矿的最大平衡吸附量(Qm)分别为21. 54、277. 98和2 607. 42 mg·kg-1.值得注意的是,当MTA在3种介质上达到吸附平衡后,溶液中部分MTA开始转化形成亚砷酸盐和砷酸盐.②随着pH的增加(4~10),MTA在细砂上的平衡吸附量(Qe)逐渐减少,在土壤沉积物和针铁矿上的Qe先减少后增加;随着固液比的增加,MTA在3种介质上的Qe均呈现出逐渐减小趋势.③XRD、SEM和BET测试结果揭示出3种介质吸附MTA的主要控制因素不同,分别是细砂的低孔容特征、土壤沉积物的高结晶程度以及针铁矿上大量的羟基官能团(—OH).  相似文献   

3.
通过实验模拟的方法,研究了徒骇河沉积物和沿岸土壤对磷酸盐的吸附作用,发现二者均具有较强的对磷酸盐的吸附作用,沉积物的吸附作用强于土壤,沉积物在2h内即可达到吸附平衡,土壤在12h内达到平衡;在中等扰动条件下,随着磷酸盐浓度的上升,沉积物和土壤的磷酸盐吸附容量均明显增加,沉积物的吸附容量大于土壤,这种吸附能力对徒骇河水体的磷酸盐缓冲作用起着积极的作用;徒骇河沉积物和沿岸土壤对磷酸盐的吸附等温曲线符合Langmuir等温吸附方程。  相似文献   

4.
砷的形态分布是影响地下水环境中砷迁移转化行为的关键。最新研究发现硫代砷是富硫高砷地下水中砷的主要存在形态。然而,中国关于高砷地下水中硫代砷形态的定量检测成果有限,现有报道多是对水样进行酸化处理后进行砷酸盐和亚砷酸盐形态分析,这一处理导致砷和硫发生沉淀从而使得硫代砷形态被破坏或被忽略。该文系统对比分析了几种不同硫代砷形态的制备、分离和定量检测技术,总结了硫代砷的形态分布及环境行为特征。未来对高砷地下水污染的研究应着重发展硫代砷形态的测试分析技术,调查硫代砷形态在高砷地下水环境中的地球化学行为特征,并探讨其对传统意义上的(亚)砷酸盐地球化学行为的影响。  相似文献   

5.
通过室内试验,研究了铝代水铁矿对As(Ⅴ)和Cd(Ⅱ)的协同作用过程及机制.结果表明,溶液体系p H值和重金属加入顺序明显影响铝代水铁矿对砷和镉的协同吸附与共沉淀.在近中性砷镉共存体系下吸附72h(p H为6. 0~6. 5),含20%铝的铝代水铁矿(AF20)对砷和镉的吸附容量达到了60. 9 mg·g~(-1)和17. 1 mg·g~(-1),去除率分别为96. 0%和73. 0%,砷和镉协同吸附到AF20颗粒内部孔隙,AF20对砷和镉的协同吸附效应明显;在砷溶液中加入镉体系下吸附72 h(p H为6. 1~6. 5),AF20对砷和镉的吸附容量分别为58. 1 mg·g~(-1)和12. 4 mg·g~(-1),去除率分别为96. 0%和48. 3%,砷的吸附限制了镉的固定;在镉溶液中加入砷体系下吸附72 h(p H为9. 5~9. 8),AF20对砷和镉固定量分别为20. 9 mg·g~(-1)和24. 4 mg·g~(-1),去除率分别为38. 8%和98. 9%,AF20对砷和镉的共沉淀效应明显,生成的砷镉难溶物通过堵塞孔道使镉呈稀疏条带状分布,同时阻碍砷的进一步吸附.上述结果表明,铝代水铁矿可协同吸附、共沉淀污染环境介质中的砷和镉.  相似文献   

6.
砷污染土壤磷酸盐淋洗修复技术研究   总被引:3,自引:2,他引:3  
淋洗修复技术是治理砷污染土壤的一种高效快速方法.本研究通过砷污染土壤批量振荡淋洗实验,筛选出环境友好且高效的淋洗剂磷酸钾,系统分析液固比、淋洗时间、淋洗液浓度、p H对土壤中砷的去除效果的影响,确定磷酸钾的最佳淋洗条件.进一步以磷酸钾为基本淋洗剂,采用不同试剂和磷酸钾进行组合二步淋洗,探究最佳复合淋洗组合.结果表明,磷酸钾在浓度为0.5 mol·L-1、液固比为4 m L·g-1、淋洗时间为8 h及p H为4.3的淋洗条件下,单独使用磷酸钾进行淋洗时,土壤砷的去除率达到74.03%.当采用0.5 mol·L-1Na OH+0.5 mol·L-1KH2PO4进行复合二步淋洗时,可使土壤中砷的去除率提高到82.60%.  相似文献   

7.
研究了浙江省绍兴银山铅锌矿周围农田的污染情况及其对土壤酶活性的影响。该污染区域内主要的污染元素为砷和铅,其含量与区内土壤脱氢酶、过氧化氢酶、过氧化物酶、转化酶、脲酶和磷酸酶呈显著的复相关关系,其中砷的影响是主要的。土壤脱氢酶、过氧化氢酶和转化酶活性的变化能够反映供试土壤类型受砷和铅复合污染的程度。  相似文献   

8.
本文从砷的有效性,砷的毒性及其与形态、价态的关系,砷的价态与溶解性的关系,砷的吸附解吸及其动力学,砷的迁移转化,砷对作物的影响及其危害等方面综述了土壤砷持染的研究现状。  相似文献   

9.
含砷废水处理的新方法   总被引:2,自引:0,他引:2  
  相似文献   

10.
通过在活性炭(AC)上原位合成聚硫代酰胺(PTA),成功制备了一种聚硫代酰胺修饰的活性炭基吸附材料(AC-PTA),研究其对废水中三价金[Au(Ⅲ)]的选择性吸附效果及机制.结果表明,AC-PTA在较宽的pH范围(<5.0)内对多金属离子共存溶液中的Au(Ⅲ)表现出优异的选择性吸附性能,Au(Ⅲ)的剩余浓度小于0.1m...  相似文献   

11.
Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients(0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil( RS, Udic Ferrisol) and Wushan paddy soil(WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil 〉 GPS-P-soil = GPS-Soil-P 〉 P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils.  相似文献   

12.
ModelingadsorptionofphosphatebysoilswhilethesolutionconcentrationdecreasedwithsorptionSuiHongjianResearchCenterofEnvironment...  相似文献   

13.
不同磷源对土壤镉有效性的影响   总被引:6,自引:2,他引:6  
本研究采用湖北省具有代表性的黄棕壤和潮土进行室内培养试验,研究了5种磷源和5个施磷量(0、0.1、0.2、0.4、0.8g.kg-1,以每kg土中有效态P2O5含量计)对土壤镉(Cd)有效性的影响.结果表明,培养8周后,随着磷酸氢二铵(DAP)、磷酸二氢铵(MAP)和过磷酸钙(SSP)施入量的增加,两种土壤的pH均显著...  相似文献   

14.
表面活性剂在土壤颗粒物上的吸附行为   总被引:58,自引:3,他引:58  
对两种阴离子表面活性剂和两种非高子表面活性剂在土壤中的吸附行为进行了初步研究.结果表明.表面活性剂在土壤/水体系中的吸附过程很快.表面活性剂浓度接近或大于临界胶团浓度后,吸附等温线为线性.温度升高会降低阴离子表面活性剂的吸附而增加非离子表面活性剂的吸附.盐度对非离子表面活性剂吸附的影响不显著,但可略微增加阴离子表面活性剂的吸附量.实验结果对表面活性剂增效修复技术的应用有一定参考价值.  相似文献   

15.
生物质炭及老化过程对土壤吸附吡虫啉的影响   总被引:4,自引:2,他引:4  
通过批处理恒温振荡法,系统考察了土壤类型(熟化红壤、新垦红壤)、生物质炭种类(竹炭、稻草炭)、生物质炭用量(0、0.1%和0.5%,质量分数)及老化过程(恒湿30 d)对土壤吸附吡虫啉的影响.Freundlich曲线描述的研究结果表明,有机质含量高的熟化红壤对吡虫啉的吸附能力强于有机质含量低的新垦红壤.生物质炭的添加能增强土壤对吡虫啉的吸附能力,且吸附能力随生物质炭施用量的增加而显著提高.添加等量生物质炭,新垦红壤吸附吡虫啉能力的增强效果强于熟化红壤;在同种土壤中添加不同种类的等量生物质炭,新垦红壤添加稻草炭后吸附能力更强,熟化红壤添加竹炭后吸附能力更强.恒湿老化后的处理对吡虫啉的吸附能力与新鲜处理相比明显降低,且添加竹炭的处理比稻草炭处理受老化过程影响更大.  相似文献   

16.
通过系列吸附实验,研究了磷酸盐(Pi)共存对MOF-Fe吸附亚硒酸盐(Se(Ⅳ))的影响.结果表明,不加Pi的吸附体系(Pi/Se=0)中,Langmuir和Freundlich模型对MOF-Fe等温吸附Se(Ⅳ)的数据的拟合度都较高;体系中加入与Se(Ⅳ)等物质的量浓度的Pi(Pi/Se=1)以后,等温吸附过程只适合用Freundlich模型拟合.与Pi/Se=0体系相比,Pi/Se=1体系中MOF-Fe对Se(Ⅳ)的最大吸附容量降低了68%,而吸附亲和力和吸附异质性却明显增强.Pi/Se=0和1的两种体系中,MOF-Fe对Se(Ⅳ)的吸附平衡时间分别为160 min和40 min,二级动力学方程可很好地描述两种体系的动力学吸附过程,液膜扩散和颗粒内扩散是吸附反应的主要速率控制因子.两种体系中,MOF-Fe对Se(Ⅳ)的平衡吸附量均随着温度的升高而降低,吸附均属于自发放热且有序度降低的过程.与Pi/Se=0体系相比,Pi/Se=1体系中MOF-Fe对Se(Ⅳ)的平衡吸附量受温度影响更为明显,这说明升高温度增强了Pi对Se(Ⅳ)吸附在MOF-Fe上的竞争强度;Pi/Se=1体系中MOF-Fe对Se(Ⅳ)的吸附自由能ΔG~θ略微增大,而焓变ΔH~θ和熵变ΔS~θ均明显减小,这说明Pi共存导致MOF-Fe对Se(Ⅳ)的化学吸附贡献增强.吸附体系pH从4.0升高至8.0时,Pi/Se=0和1体系中MOF-Fe对Se(Ⅳ)的平衡吸附量分别降低了7%和37%.当增大体系中Pi的浓度时,MOF-Fe对Se(Ⅳ)的平衡吸附量呈指数模型降低并稳定于最大吸附量的30%,这表明MOF-Fe对Se(Ⅳ)的吸附中约70%的比例可归属为可逆吸附.可见,Pi/Se=1体系中MOF-Fe对Se(Ⅳ)的吸附可分为可逆和不可逆吸附,其中,可逆吸附受Pi的竞争作用影响而明显降低,不可逆吸附则不受共存Pi的影响.  相似文献   

17.
选择苯甲腈为目标污染物,研究添加不同热解温度制备小麦秸秆生物碳对黄土吸附苯甲腈的影响. 研究表明:不加生物炭黄土对苯甲腈的吸附约8h达到平衡,而加入生物炭后,黄土对苯甲腈的吸附时间缩短,并随着加入生物炭热解温度的升高,吸附平衡时间缩短越明显,同时,黄土对苯甲腈的饱和吸附量也显著增加;添加生物炭黄土对苯甲腈的动力学吸附数据显示较好的符合了准二级动力学方程;无论是否添加生物炭,苯甲腈在黄土上的吸附都符合Freundlich吸附的等温模型,随系统温度升高,添加生物炭黄土对苯甲腈的饱和吸附量也显著增加,表明该吸附过程为吸热反应;苯甲腈在黄土上的吸附等温线符合C-型吸附等温模式. 计算结果显示,平均吸附自由能E介于1.865~3.171kJ/mol,表明苯甲腈在黄土上的吸附,无论是否添加生物炭,都以物理吸附为主;热力学参数计算结果显示,无论是否添加生物炭,黄土对苯甲腈的吸附过程中吉布斯自由能ΔGθ均小于0、熵变ΔSθ和焓变ΔHθ均大于0,表明土壤对苯甲腈的吸附为自发进行的吸热过程. 研究结果说明,添加生物炭黄土对苯甲腈的吸附过程包含表面吸附和颗粒内部扩散、外部液膜扩散等机制.  相似文献   

18.
以蒙东褐煤为原料,通过沉降炉炭化活化一步法制备了粉末活性焦(COKE),其具有丰富的孔隙结构,以微孔为主,占据比表面积的79.3%.考察了活性焦对水中磷酸盐的吸附性能,并进一步研究了吸附时间、温度、初始pH值、初始磷酸盐浓度、活性焦投加量和共存离子对吸附过程的影响,以及吸附动力学、吸附等温线和热力学特征.结果表明:活性焦对水体中的磷酸盐具有良好的吸附性能.在30℃,pH=7的条件下,利用20.00g/L活性焦吸附1mg/L磷酸盐溶液,60min即可达到吸附平衡,此时吸附率可达89.4%.当吸附温度越高(10~40℃),活性焦投加量越大,溶液pH值在6~7时,活性焦对水中磷酸盐的去除效果越好.共存离子的存在(NO3-、SO42-、CO32-)对活性焦吸附磷酸盐有抑制作用.活性焦对磷酸盐溶液的吸附过程较好符合Freundlich模型(R2>0.99)和准二级动力学模型(R2>0.99),最大吸附容量为1.746mg/g(30℃),并通过热力学分析发现此过程为自发的吸热反应.利用傅立叶红外光谱分析进一步表明,活性焦吸附磷酸盐主要依靠配位交换.与活性炭相比,活性焦性价比更高,具有良好的应用前景.  相似文献   

19.
为了了解不同氮磷肥对褐土吸附土霉素的影响,将OECD Guideline 106作为参考方法,并选用NH4Cl,CO(NH2)2,Ca(NO3)2及Ca(H2PO4)2四种常用的农业化肥作为影响因素,进行等温吸附试验.结果表明,氮磷肥添加过后,吸附等温线依然可用Langmuir和Freundlich方程拟合(PNH4Cl>CK>Ca(H2PO4)2>CO(NH2)2,而在吸附率和分配系数方面影响最大的则是CO(NH2)2,数值平均下降了2.43%,13.19%,最小的则是Ca(H2PO4)2,其值平均下降了1.75%,9.59%.  相似文献   

20.
聚合羟基金属-粘土矿物复合物广泛存在于自然环境中,对重金属阳离子和含氧酸根阴离子均有很好的吸附能力,因此对这些化合物的环境迁移过程及污染控制具有重要影响.研究采用FeCl3和Na2CO3共同改性膨润土,制备了羟基铁-膨润土复合物(HyFe-Bent).XRD和孔结构分析结果发现,HyFe-Bent的d001由原土的1.52 nm增加到1.81 nm,比表面积由原土的52.2 m2·g-1增大到108.4 m2·g-1.将HyFe-Bent用于同时吸附水中磷酸根(P)和镉离子(Cd),结果表明,在实验条件下P和Cd在HyFe-Bent上表现出明显的协同吸附效应,溶液pH升高可促进Cd的吸附但降低P的吸附.此外研究了P和Cd吸附次序对它们吸附性能的影响:在先吸附P的体系中两种物质的吸附性能与同时吸附体系相当,而在先吸附Cd的体系中吸附性能则明显低于同时吸附体系.由此提出P和Cd协同吸附的原理是多种吸附机制共存:除了配体交换和离子交换作用,它们在HyFe-Bent表面还发生了表面沉淀作用,可能形成了Fe-P-Cd三元络合产物.论文研究结果可为了解重金属和含氧酸根复合体系的环境行为及污染控制提供新信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号