共查询到19条相似文献,搜索用时 62 毫秒
1.
为研究食用植物油加工行业挥发性有机物(VOCs)排放特征及其健康风险,该文选取了2家典型食用植物油加工企业(G和H)共13个点位进行采样分析,并对其生产车间的人体健康风险进行评价。结果表明,H企业的干燥回收工艺段VOCs排放浓度最高,达528.12 mg/m3,2家企业浸出、榨油、蒸脱、干燥回收工艺段VOCs排放浓度均超过120 mg/m3;VOCs组分类别以烷烃为主,正己烷、3-甲基戊烷、甲基环戊烷是该行业VOCs的优势物种;烷烃对OFP的贡献最大,达到91.2%,正己烷、3-甲基戊烷、甲基环戊烷、2-甲基戊烷是VOCs浓度占比和对OFP贡献占比前4的组分,溶剂使用是该行业加工过程VOCs排放的主要来源;在对车间VOCs浓度非致癌风险的评价中,G企业榨油浸出车间VOCs浓度对人体健康存在非致癌风险;致癌风险评价中,G企业榨油浸出车间苯、乙苯对人体健康存在大概率致癌风险,G企业和H企业的污水处理厂中苯、乙苯存在小概率致癌风险,G企业和H企业浸出车间中苯存在小概率致癌风险,乙苯则未达到致癌风险。 相似文献
2.
为研究典型树种的挥发性有机物(VOCs)排放特征,并获得基础排放速率,应用动态封闭式采样系统对毛果杨、北美枫香和马尾松的排放进行了实验室测量.利用热脱附-气相色谱-飞行质谱仪对排放样品进行定性和定量分析,包括异戊二烯、单萜烯、倍半萜烯、烷烃和烯烃,计算获得各树种VOCs排放速率及其排放谱特征.研究表明:毛果杨、北美枫香和马尾松的总VOCs排放速率分别为19.51、17.19和0.67μg/(g·h).毛果杨的异戊二烯排放最高(18.51μg/(g·h)),占其总排放的94.86%;马尾松排放的异戊二烯仅占4.03%,单萜烯贡献最高,为49.09%;北美枫香的单萜烯排放速率最高,为0.84μg/(g·h);3个树种排放的倍半萜烯占各自VOCs总排放的比重均较小(<1.5%);各树种的烷烃排放强度高于倍半萜烯,部分化合物甚至高于异戊二烯和单萜烯的排放强度.反式-β-罗勒烯是毛果杨排放最多的单萜烯化合物,占其单萜烯总排放的99.84%;北美枫香排放的单萜烯主要以香桧烯和β-蒎烯为主;马尾松以α-蒎烯、香桧烯和β-蒎烯为主.石竹烯、葎草烯、δ-杜松烯和β-愈创木烯是主要的倍半萜烯物种.烷烃排放主要为C4和C5的化合物,特别是异丁烷和正丁烷;各树种排放的烯烃中,1-丁烯排放占比最高. 相似文献
3.
国外对挥发性有机物(volatile organic compounds,VOCs)的减排经验表明,食用植物油加工行业作为主要溶剂使用源,需要对其排放的VOCs进行管控,为研究国内该行业的VOCs排放特征及管控对策,依据第二次全国污染源普查数据,选择了大豆油加工行业中的两家典型企业,对主要排放环节的排放强度及组分构成进行采样分析,结合最大增量反应活性法(maximum incremental reactivity,MIR)核算了行业的臭氧生成潜势(ozone formation potential,OFP).结果表明:所选两家大豆油加工企业浸出工艺段、精炼工艺段及其配套污水处理厂均存在高浓度VOCs排放节点,各采样点位VOCs浓度范围为42.3~5 134.3 mg/m3,两家企业VOCs浓度最高的采样点位均出现在浸出工艺段的石蜡油吸收塔排气筒;浸出工艺段各采样点位的检出组分主要为正己烷、3-甲基戊烷、甲基环戊烷、2-丁烯醛,精炼工艺段检出组分中己烷及其同分异构体和2-丁烯醛同样占比较高,同时还检出了戊烷、乙烷、乙烯、1-丁烯、丙烯醛、苯和甲苯等组分;浸出工艺段和... 相似文献
4.
国外对挥发性有机物(volatile organic compounds,VOCs)的减排经验表明,食用植物油加工行业作为主要溶剂使用源,需要对其排放的VOCs进行管控,为研究国内该行业的VOCs排放特征及管控对策,依据第二次全国污染源普查数据,选择了大豆油加工行业中的两家典型企业,对主要排放环节的排放强度及组分构成进行采样分析,结合最大增量反应活性法(maximum incremental reactivity,MIR)核算了行业的臭氧生成潜势(ozone formation potential,OFP).结果表明:所选两家大豆油加工企业浸出工艺段、精炼工艺段及其配套污水处理厂均存在高浓度VOCs排放节点,各采样点位VOCs浓度范围为42.3~5 134.3 mg/m3,两家企业VOCs浓度最高的采样点位均出现在浸出工艺段的石蜡油吸收塔排气筒;浸出工艺段各采样点位的检出组分主要为正己烷、3-甲基戊烷、甲基环戊烷、2-丁烯醛,精炼工艺段检出组分中己烷及其同分异构体和2-丁烯醛同样占比较高,同时还检出了戊烷、乙烷、乙烯、1-丁烯、丙烯醛、苯和甲苯等组分;浸出工艺段和... 相似文献
5.
对比了浙江省2014和2018年金属表面涂装企业的有机废气排放及治理情况,分析了该行业涂料及稀释剂的使用、主要污染因子,测算了溶剂型、水性涂料的挥发性有机物(VOCs)产生系数和排放系数.结果表明:2018年VOCs治理水平明显高于2014年,水性涂料使用企业比例由18%上升至36%,纯溶剂型企业由82%下降至64%;金属表面涂装行业的主要排放污染物为二甲苯、丁醇、乙酸乙酯、乙酸丁酯、甲苯、丙二醇、乙苯、苯乙烯等8种有机物.溶剂型和水性涂料的VOCs产生系数分别为0.72和0.31kg/kg;溶剂型和水性涂料2014年VOCs排放系数为0.64和0.29kg/kg,2018年为0.48和0.21kg/kg. 相似文献
6.
7.
为评估河南省生活垃圾焚烧发电厂排放的挥发性有机物(VOCs)对臭氧生成的贡献,选取某典型企业进行调研. 采用气袋、苏玛罐和吸附管进行采样,通过气质联用(GC/MS)和高效液质(HPLC/MS)联用分析方法对117种VOCs物种排放水平进行监测,并计算本地化VOCs排放因子. 采用最大增量反应活性(MIR)法计算臭氧生成潜势(OFP),并识别OFP贡献率较大的物种. 结果表明:①主排放口实测的VOCs总浓度为4.28 mg/m3,VOCs排放量为3.5 t/a,计算的VOCs排放因子为0.016 g/kg (以垃圾计,下同). ②MIR系数法计算的有组织OFP总排放量为9.3 t/a,对应的MIR系数平均值为2.67. ③排放量占比较大的VOCs组分依次为芳香烃(38.37%)、卤代烃(28.79%)、含氧化合物(14.32%)和烷烃(12.75%). 对OFP贡献率较大的VOCs组分为芳香烃(53.91%)和含氧化合物(28.16%),OFP贡献率排名前5位的VOCs物种分别为乙醛(20.5%)、间/对-二甲苯(20.2%)、正丁烯(6.2%)、1,2,4-三甲苯(5.4%)和正丁醛(4.9%). ④固废间、锅炉房、锅炉房外、渗滤液泵房及房顶采样点测得的VOCs无组织排放总浓度分别为83.6、6.19、1.24、5.71、1.79 mg/m3. 研究显示,该垃圾焚烧发电厂固废间VOCs浓度较高,需要进一步提高车间内VOCs收集率,以减少无组织VOCs排放,同时可在主排放口安装合适的VOCs去除装置以进一步削减VOCs有组织排放量. 相似文献
8.
电子产品加工制造企业挥发性有机物(VOCs)排放特征 总被引:7,自引:4,他引:7
根据美国EPA挥发性有机物标准检测法TO-11及TO-14/15,采用VOCs快速检测仪、Summa罐及DNPH吸附管,对我国某大型电子产品加工制造企业中不同工艺环节生产车间内部及生产线最终废气排放管道中VOCs含量水平及组分特征进行检测.结果表明,该企业涉及VOCs排放工艺中压铸车间总挥发性有机物(TVOCs)浓度为0.1~0.5 mg·m-3、机加工车间TVOCs浓度为1.5~2.5 mg·m-3、喷涂车间中TVOCs浓度为20~200 mg·m-3,各车间VOCs组分主要包括烷类、烯炔类、芳香类、酮类、酯类和醚类,共20余种.其中涂装车间内苯系物及酮类物质为主要VOCs组分,各物质浓度分别为苯0.02~0.34 mg·m-3、甲苯0.24~3.35 mg·m-3、乙苯0.04~1.33 mg·m-3、对二甲苯0.13~0.96 mg·m-3、邻/间二甲苯0.02~1.18mg·m-3、丙酮0.29~15.77 mg·m-3、2-丁酮0.06~22.88 mg·m-3、环己酮0.02~25.79 mg·m-3、甲基异丁基甲酮0~21.29mg·m-3.根据该企业生产特征及工艺数据计算,其单条生产线VOCs年排放量为14 t,整个厂区年排放量约为840 t.结合生产流程及生产工艺分析,喷涂过程中的溶剂使用是电子产品加工制造企业的VOCs主要排放来源,废气排放口是重点排放点. 相似文献
9.
薪柴及经济作物秸秆在中国农村地区仍普遍使用,其燃烧是挥发性有机物(VOCs)的重要排放源,当前对其排放特征研究仍比较薄弱.本研究选取了3种薪柴(白杨树、杉木和柑橘枝)和6种经济作物秸秆(黄豆秆、芝麻秆、玉米棒、棉花秆、花生秆和玉米秆),通过实验室模拟燃烧和稀释通道采样系统,采用Tedlar袋和Agilent 7820A/5977E气相色谱/质谱联用法采集和分析了烟气中102种VOCs组分组成,并对不同类型生物质燃烧排放VOCs的臭氧生成潜势进行分析.结果表明,不同类型的生物质燃烧排放的VOCs组分存在差异,乙烷(11.1%)、反-2-戊烯(15.4%)、乙烯(8.3%)和二氯甲烷(11.9%)是白杨树和杉木燃烧排放的主要VOCs组分;甲苯(49.8%)是柑橘枝燃烧排放的VOCs含量最丰富的物种;乙烯(11.8%~17.5%)和丙酮(9.2%~14.7%)是秸秆类燃料燃烧的主要VOCs组分.玉米秆、花生秆和柑橘枝具有相似的VOCs源成分谱,分歧系数小于0.1.本研究及已有报道中的生物质燃烧排放苯/甲苯比值范围是0.030~6.48,在开展源解析研究中,采用苯/甲苯比值大于1认定为受到生物... 相似文献
10.
为研究轻型汽油车尾气中VOCs的排放特征和排放因子,按照《轻型汽车污染物排放限值及测量方法》(中国Ⅲ、Ⅳ阶段)中要求,采用底盘测功机对国内现有不同品牌轻型汽车进行台架试验,并利用3级冷阱预浓缩GC-MS方法对尾气样品中VOCs物种进行定量分析.结果表明,尾气样品中共有68种VOCs被定量检出,其中芳香烃种类最多,占38.7%,烷烃占29.8%,烯烃(包含炔烃)占27.1%.不同品牌轻型车源排放谱特征基本吻合.轻型汽车的总VOCs排放因子为0.01~0.46g/km,前3位物种分别为乙烯、甲苯和苯. 相似文献
11.
选取衡水市3家典型橡胶制品企业作为研究对象,通过GC-MS/FID对其VOCs排放特征进行研究,并运用最大增量反应活性系数(maximum incremental reactivity,MIR)和气溶胶生成系数(fractional aerosol coefficient,FAC)分别对其臭氧生成潜势(ozone formaiton potential,OFP)和二次有机气溶胶(secondary organic aerosol,SOA)生成潜势进行评估.结果表明,橡胶制品行业的VOCs排放种类主要包括烷烃类、酮类、醛类、醇类和苯系物等.对于传统的只有炼胶工艺和硫化工艺的橡胶制品企业,其特征污染物主要为酮类和醇类,而对于涉及涂胶工艺和喷漆工艺的橡胶制品企业来说,其特征污染物为苯系物.对典型生产工艺的臭氧和SOA的生成潜势进行了评估:臭氧影响方面,对于不涉及涂胶和喷漆工艺的橡胶制品企业,臭氧生成贡献主要来自于含氧烃,对于涉及涂胶和喷漆工艺的企业,由于胶黏剂和漆料等有机溶剂的大量使用,苯系物对臭氧生成的贡献还是要远远大于其它VOCs物种,占到了VOCs总贡献的82.9%; SOA影响方面,... 相似文献
12.
四川省典型人为污染源VOCs排放清单及其对大气环境的影响 总被引:3,自引:11,他引:3
基于四川省环境统计调查数据和相关统计资料,利用排放因子法计算得到2011年四川省典型人为源VOCs的排放量及其地区分布情况,同时还估算了各污染源排放的VOCs的臭氧生成潜势与二次有机气溶胶生成潜势.四川省典型人为污染源VOCs排放总量为482 kt,其中生物质人为燃烧源、溶剂使用源、工业过程源、化石燃料分配源、固定化石燃料燃烧源排放量分别为174、153、121、21和13 kt;溶剂使用源中,建筑墙壁涂料使用、家具、木器装修以及人造板制造为主要排放行业;工业过程源中,19.4%的VOCs排放量来自于制酒行业.四川省各地区排放数据中,成都市排放量最高为112 kt.四川省臭氧生成潜势总量为1 930 kt.二次有机气溶胶生成潜势中,溶剂使用排放源贡献50.5%,生物质人为燃烧源与工业过程源的贡献均为23%左右,化石燃料分配和固定化石燃料燃烧源分别贡献1.0%和1.4%. 相似文献
13.
典型工业无组织源VOCs排放特征 总被引:15,自引:0,他引:15
选取制药厂、酿酒厂和橡胶厂分析了不同工艺过程VOCs排放特征.结果表明,制药厂安乃近合成和氨基比林合成的VOCs排放以苯、甲苯和苯乙烯等苯系物为主,乙酰氨基酚合成的VOCs排放主要以C4~C6的烷烃为主,酿酒厂和橡胶厂VOCs排放均以甲苯、乙苯和间,对二甲苯为主.采用最大增量反应活性法对臭氧生成潜势进行分析,制药厂安乃近合成和氨基比林合成VOCs单位臭氧生成潜势以苯、甲苯等苯系物为主;乙酰氨基酚合成以顺-2-丁烯、甲苯和异戊烷为主;酿酒厂、橡胶厂以甲苯、乙苯、间,对二甲苯为主.同时采用阈稀释倍数对VOCs进行恶臭分析,制药厂和酒厂无组织排放VOCs恶臭污染程度较轻,橡胶厂的伸缩装置车间和硫化车间的无组织VOCs排放存在一定程度的恶臭污染. 相似文献
14.
移动源排放VOCs特征及臭氧生成潜势研究—以兰州市为例 总被引:4,自引:0,他引:4
高浓度近地面臭氧(O_3)污染是国内外许多城市面临的大气污染问题,且近年来O_3浓度呈逐渐升高的趋势.随着城市规模日益扩大,移动源成为VOCs的主要排放源之一,对移动源的O_3生成潜势进行评估,并识别其关键物种和重点污染区域,可为城市O_3控制对策的制定提供科学依据.本文以兰州市移动源为例,结合排放系数、交通流量及相关统计数据,建立兰州市VOCs移动源排放清单,并使用最大增量反应活性(MIR)估算移动源VOCs的臭氧生成潜势(OFP).结果表明,兰州市汽油车是移动源中最主要的OFP贡献源类,占移动源的71.12%;烯烃和芳香烃为移动源总OFP主要的贡献者,主要贡献物种为:乙烯、丙烯、甲醛、3-甲基-1-丁烯、甲苯、正丁烯、乙炔、间二甲苯、1,2,4-三甲基苯、邻二甲苯,这10个物种的OFP占移动源总OFP的67.29%;根据兰州市移动源VOCs排放的OFP贡献空间分布结果,移动源VOCs排放的重点控制区域为城关区和七里河区. 相似文献
15.
基于人为源挥发性有机物(VOCs)活动水平统计和源成分谱梳理,采用排放因子法,建立了郑州市2016年VOCs组分排放清单,评估了各类源臭氧生成潜势(OFP).结果表明, 2016年郑州市人为源VOCs排放总量为96 215.3 t,排放量最高的是道路移动源(29.7%),其次是有机溶剂使用源(28.1%);排放量最高的组分是烷烃(29.8%),其次是芳香烃(29.0%).郑州市人为源VOCs的OFP为341 291.0 t,贡献最高的排放源是道路移动源(30.5%),其次是溶剂使用源(28.8%),其中轻型汽油车、内墙涂料使用、机动车表面涂层、加油站装卸油和非金属矿物制造是OFP的主要次级排放源,也是郑州市降低臭氧污染时需重点管控的VOCs排放源.对于VOCs种类而言,贡献较高的是芳香烃(42.8%),其次是烯烃(38.9%),未来应加强对间/对-二甲苯、丙烯和乙烯等物种排放来源的控制. 相似文献
16.
石油炼化无组织VOCs的排放特征及臭氧生成潜力分析 总被引:3,自引:0,他引:3
选取我国光化学活跃的珠江三角洲地区(PRD)典型石油炼化工艺的炼油装置、化工装置和污水处理装置,采用离线和在线的多种先进仪器监测其VOCs的无组织排放特征,并采用间、对-二甲苯/苯(X/B)、甲苯/苯(T/B)、乙苯/苯(E/B)比值分析其VOCs的老化特征,采用最大增量反应活性法(MIR)、等效丙烯浓度法和OH自由基反应速率法(LOH)3种方法综合评价其VOCs的化学反应活性及臭氧生成潜势(OFP).研究发现,炼油装置区和化工装置区总挥发性有机物(TVOC)浓度早晚高,中午低;污水处理区呈双峰趋势.3个装置区无组织排放的VOCs中烷烃浓度均占比最高,同一装置区内的不同装置VOCs排放特征不同.石化企业X/B、T/B和E/B值较城区和郊区的高,化工装置区的压缩碱洗装置区(CAW)T/B值最大.石化企业VOCs的活性较城区和郊区的强,其平均OH消耗速率常数为15.22×10-12cm3/(mol·s),最大增量反应活性为4.21mol(O3)/mol(VOC).化工装置区对石化企业OFP总量的贡献最高,为84.83%;其次是污水处理区,12.95%;炼油装置区最低,为2.22%.化工装置区的CAW对石化企业OFP贡献率最高,为34.26%;污水处理区的浮选池(FT)贡献率最低,为0.36%. 相似文献
17.
机动车尾气排放VOCs研究进展 总被引:2,自引:0,他引:2
机动车尾气排放的挥发性有机物(VOCs)严重危害着人类的健康和大气环境,备受人们关注。本综述对机动车尾气排放VOCs的采样和分析等监测技术研究进展进行了综合和概括;对国内外机动车尾气排放VOCs的研究进行了分类和归纳。对国内研究存在的问题进行了总结,并对未来相关研究进行了展望。目前,国内机动车排放VOCs源成分谱、采样分析方法,以及其排放特征都需要进一步深入研究。 相似文献
18.
为研究西安市人为源VOCs(挥发性有机物)对OFP(O3生成潜势)和SOAFP(二次有机气溶胶生成潜势)的影响,基于西安市环境统计数据和相关统计资料,结合排放因子法和已有的源成分谱,建立西安市人为源VOCs排放清单,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算各类人为源排放VOCs对O3和SOA(二次有机气溶胶)的生成贡献.结果表明:①2016年西安市人为源VOCs排放总量为119.187×103 t,其中,溶剂使用源、移动源和工艺过程源是主要的排放源,排放量分别为50.676×103、29.414×103、24.430×103 t. ②2016年西安市各区县VOCs排放总量较大的依次为长安区、雁塔区、未央区和碑林区,排放量分别为15.28×103、12.34×103、11.81×103和10.14×103 t,莲湖区、新城区和灞桥区VOCs排放量大于5×103 t,而阎良区排放量最小. ③2016年西安市总OFP为222.087×103 t,间/对-二甲苯、甲苯、邻-二甲苯等对总OFP的贡献率为72.40%;溶剂使用源对总OFP的贡献率最大,其次是生物质燃烧源,并且生物质燃烧源单位质量VOCs的OFP最强. ④2016年西安市总SOAFP为318.347 t,间/对-二甲苯、甲苯、邻-二甲苯、乙苯等对总SOAFP的贡献率为88.65%;溶剂使用源对总SOAFP的贡献率最大,其次是生物质燃烧源,而且溶剂使用源单位质量VOCs的SOAFP强于其他排放源.研究显示,与其他地区VOCs单位面积排放清单相比,西安市VOCs单位面积排放强度处于中等水平. 相似文献
19.
为掌握不同涂料类型废气之间的排放差异,基于溶剂型、水性、溶剂型辐射固化(ultra-violet,UV)、水性UV和粉末等不同涂料类型,选取典型家具制造企业进行废气采样,对比研究不同涂料类型废气挥发性有机物(volatile organic compounds,VOCs)排放浓度和组分差异,并对不同涂料类型废气的臭氧生成潜势(ozone formation potential,OFP)和二次有机气溶胶生成潜势(secondary organic aerosol formation potential,SOAFP)进行分析.结果表明,溶剂型涂料废气的总挥发性有机化合物(total volatile organic compound,TVOC)浓度、OFP和SOAFP均高于水性、溶剂型UV、水性UV和粉末涂料废气.不同涂料类型有组织废气VOCs浓度水平和组成差异较大.溶剂型涂料和溶剂型UV涂料废气以芳香烃和含氧挥发性有机物(oxygenated volatile organic compounds,OVOCs)为主,芳香烃的占比分别为41.91%~60.67%和42.51%~43.00%,OVOCs的占比分别为24.75%~41.29%和41.34%~43.21%.水性涂料、水性UV涂料和粉末涂料废气中VOCs占比最高的是OVOCs,占比分别为54.02%~62.10%、55.23%~64.81%和42.98%~46.45%.溶剂型涂料废气的主要组分为苯乙烯(14.68%),水性涂料废气的主要组分为甲缩醛(14.61%),溶剂型UV涂料和水性UV涂料废气的主要组分均为乙酸丁酯(15.36%和20.56%),粉末涂料废气的主要组分是3-乙氧基丙酸乙酯(20.19%).芳香烃对溶剂型涂料和溶剂型UV涂料废气的OFP贡献最大,分别为79.84%和80.32%.水性涂料和水性UV涂料废气OFP的主要贡献者是芳香烃(51.48%和36.71%)和OVOCs(42.30%和41.03%).芳香烃(43.46%)、OVOCs(28.06%)和烯烃(25.24%)是粉末涂料OFP的主要贡献者.芳香烃是溶剂型涂料、水性涂料、溶剂型UV涂料、水性UV涂料和粉末涂料废气SOAFP的绝对贡献者,占比均超过99%. 相似文献