首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dagva.  D  叶勇 《Ambio-人类环境杂志》1996,25(4):296-298
根据IPCC/OECD指南关于二氧化碳、甲烷、氮氧化物和一氧化碳等温室气体放清单的编制方法。我们在1990年财政年度编制了蒙古的温气体排放清单,计算了CO2的清除。人为的活动包括能源的消费与生产,农业活动牲畜存栏数的增加,森林砍伐及其它因素造成的土利用变化、工业生产和固体、液体废物的排放引直敢温室气体的排放和清除。估计190年上述部门的总计净排放量为:CO2、18.5Mt;CH4,0.3Mt;NO  相似文献   

2.
深圳市温室气体排放清单研究   总被引:5,自引:5,他引:5       下载免费PDF全文
根据深圳市相关统计资料收集到的活动水平数据,参照《2006年IPCC国家温室气体清单指南》温室气体核算方法,建立了深圳市温室气体排放清单,并且与其他城市的温室气体排放水平进行了对比. 结果表明:2008年深圳市温室气体总排放量(以CO2排放当量计)为6 569.4×104 t,能源部门的温室气体排放量占总排放量的比例最大,达80.8%;工业过程、废物处理处置部门和农林和其他土地利用(AFOLU)部门排放所占比例分别为16.5%、5.1%和-2.4%. 深圳市温室气体人均排放量为7.49 t/人,单位GDP的温室气体排放量为0.84 t/104元,二者均低于北京、上海、天津和无锡的平均排放水平,但高于重庆市.   相似文献   

3.
采用静态箱/气相色谱法对一座典型简易生活垃圾填埋场的CH4、N2O和CO2释放通量进行了为期1a的监测,讨论了相关影响因素和通量的季节变化。研究发现:该填埋场CH4、N2O和CO2年平均释放通量分别为(43.93±129.99)mgC/(m2·h)、(622.68±1215.54)μgN/(m2·h)和(132.57±158.90)mgC/(m2·h),即19.64kgCO2-eq/(m2·a)。CH4和N2O占温室气体年排放总量的比例分别为65.31%和13.01%,而在夏季和秋季N2O可占到当季温室气体排放量的20.23%和27.30%。统计分析显示:CO2释放通量与CH4(p0.01)和N2O释放通量(p0.05)显著正相关;N2O释放通量与气温显著正相关(p0.05);CH4和CO2释放通量呈现一定的季节差异,而N2O释放通量四季无显著差异。  相似文献   

4.
根据渭南市机动车保有量和抽样调查与观测数据,采用 MOVES 模型计算了渭南市 2017—2019 年道路移动源 CO2、CH4、N2O 和 CO 4 种温室气体的排放量,分析了机动车车型、燃料和排放标准对温室气体排放量的影响.基于ArcGIS和渭南市道路网信息,建立了高分辨率(1 km×1 km 和 1 h×1 h)的温室气体排放清单 . 结果表明,渭南市 2019 年道路移动源 CO2、CH4、N2O 和 CO 的排放量分别为 424.322×104、0.044×104、0.007×104和 2.808×104 t,以 CO2当量计,机动车温室气体的总排放量为 432.843×104 t. 4种道路移动源温室气体中,CO2占总温室气体排放量的98.03%. 渭南市小型客车对温室气体的贡献率最大,分别排...  相似文献   

5.
江苏省温室气体排放研究   总被引:3,自引:0,他引:3  
根据IPCC Guidelines(1995)提供的方法,对1990年江苏省温室气体排放清单统计计算,分析该地区能源、工业及农业CO_2、CH_4等温室气体排放量的状况.江苏省年人均排放CO_2为1970kg、CH_4为22.65kg、N_2O为0.11kg,与全国平均水平接近、为全球均值一半.能源消耗是江苏省各项活动中CO_2的排放主要因素,占总排放量的91.6%;CH_4的排放主要来自水稻田,占总排放量的44.1%.  相似文献   

6.
中国的道路交通部门正面临日益严峻的温室气体减排压力,机动车作为道路交通系统中的核心要素之一,其低碳化进程对于道路交通部门应对气候变化具有重要的现实和战略意义。从长期来看,机动车的低碳发展意味着传统机动车向新能源汽车的过渡和发展。本文首先综述了中国新能源汽车的产业政策发展,然后讨论了新能源汽车在深圳市的试点示范推广情况,并介绍了新能源汽车在上海世博会的示范应用,最后指出新能源汽车近年来在中国的快速发展也得益于中央和地方政府的积极推动,汽车厂商、科研机构和消费者等诸多利益相关者的积极参与,新能源产业政策的日益完善。  相似文献   

7.
中国畜牧业全生命周期温室气体排放时空特征分析   总被引:8,自引:0,他引:8  
运用生命周期评价方法,选取家畜胃肠道发酵、粪便管理系统、畜禽饲养环节耗能、饲料粮种植、饲料粮运输加工和畜禽产品屠宰加工6大环节,采用面板数据测算和分析1990~2011年中国及2011年国内各地区畜牧业温室气体排放特征.研究表明,22年间,中国畜牧业全生命周期及各个环节的CO2当量排放量均呈现上升趋势,尤其是畜禽饲养耗能、饲料粮种植、饲料粮运输加工和畜禽屠宰加工环节的增长更为显著,但历年饲料粮运输加工和畜禽屠宰加工环节占畜牧业全生命周期CO2当量排放总量的比重均低于1%和0.05%;家畜胃肠道发酵和粪便管理系统环节占畜牧业全生命周期CO2当量排放总量的比重呈下降趋势;22年间,反刍家畜的CO2当量排放量占55.25%,非反刍畜禽占44.75%.2011年,国内省域间内蒙古、辽宁和云南的畜牧业全生命周期CO2排放当量和排放强度均位居全国前10位;西部地区畜牧业全生命周期CO2当量排放量所占比重最大,并且西部地区的排放强度最高;农区畜牧业全生命周期CO2当量排放量占63.88%,牧区占14.07%,但牧区的排放强度最高,农区最低.  相似文献   

8.
文章为做好温室气体减排的前期基础研究工作,从乌鲁木齐市能源消耗现状出发,根据《IPCC指南》中的表观能源消耗量估算法及排放系数法,分别对煤炭、成品油和天然气消费所排放的CO2、CH4和N2O量进行测算和分析,结果表明:乌鲁木齐市能源部门温室气体排放量近几年增长非常迅速,且与能源消费量呈显著正相关;三大能源中,煤炭消费为温室气体排放的主要来源。  相似文献   

9.
分析了2011年哈尔滨市地面空气中几种主要温室气体的季节变化特征,O3形成的主要影响因素,对温室气体的相互转化规律进行了探讨。  相似文献   

10.
分析了德国的温室气体排放特征,指出了温室气体排放量的年际变化、区域差异及其主要来源。  相似文献   

11.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

12.
深圳大气VOCs浓度的变化特征与化学反应活性   总被引:15,自引:0,他引:15       下载免费PDF全文
对深圳2010年4个季节大气中VOCs进行了监测,研究了VOCs组分、季节变化和日变化特征.结果表明,烷烃是大气中含量最丰富的VOCs物种,占总VOCs的50%以上,其他依次是芳香烃和烯烃.总VOCs浓度季节变化表现为冬季最高和夏季最低,日变化特征则表现为夜晚浓度高、白天浓度低,峰值出现在早晨7:00左右,最低值则出现在下午14:00.通过VOCs物种间的比值特征分析了部分物种的来源,结果显示,反式-2-丁烯和顺式-2-丁烯主要来源于机动车尾气,甲苯和正己烷则受到了溶剂挥发的影响.利用最大增量反应活性(MIR)计算了各类VOCs的臭氧生成潜势(OFP),大气各类VOCs的OFP芳香烃最高、其次为烯烃,烷烃最低,甲苯、间,对-二甲苯和乙烯对臭氧生成的贡献在VOCs物种中排名前3.  相似文献   

13.
基于江西景德镇温室气体站2017年12月~2018年11月筛分获得的CH4及CO大气本底和污染浓度数据,对大气CH4和CO浓度季节变化及其排放源特征进行研究,结果表明:大气CH4和CO本底浓度季节变化特征与浙江临安本底站类似,即夏季低而冬季高,而夏季江西地区水稻田和湿地排放导致CH4污染浓度显著抬升,相比本底浓度抬升幅度可达133.9×10-9,冬季受西北部地区取暖排放的区域输送的影响,1月CO污染平均浓度较本底浓度抬升达227.2×10-9.基于本底数据及污染数据,结合后向轨迹模型分析发现景德镇站大气CO潜在排放源主要分布在湖北东南部(四季)、安徽(秋冬季)、山东中部(秋季)、长江三角洲上海及杭州(夏秋季)、湖南东部和江西地区(冬季)等区域,其中冬季湖南东部和江西地区贡献率达53.7%,CH4排放源主要集中在江西地区(夏季)、长江三角洲杭州、南京及安徽南部覆盖区域(夏季)、湖北东南部(夏秋季)以及安徽(秋季)、山东中部(秋季)等区域,夏季南京、杭州及安徽南部覆盖区域的CH4排放对景德镇站CH4浓度抬升的贡献率达到69.5%.大气CH4及CO呈现较好的相关性,冬季其相关系数可达0.86,受CH4和CO源汇季节变化影响,CH4/CO排放比呈现冬季低值(0.31)、夏季高值(1.06).  相似文献   

14.
采用IPCC推荐的温室气体清单计算方法,从温室气体排放总量、排放强度等方面分析了华中地区畜牧业温室气体排放现状;根据不同牲畜饲养数量,采用Logisticgrowth model、Gompertzcurve model等非线性时间序列模型模拟2030年华中地区牲畜数量,并计算畜牧业温室气体排放量.结果显示,2015年华中地区温室气体排放为6289.09万t CO2-eq,单位GDP温室气体排放量为1.13万t CO2-eq/亿元,单位肉类产量排放强度为3.73t CO2-eq/t;2030年华中地区畜牧业温室气体排放总量约为4990.06(温室气体排放预测1)~5932.74万tCO2-eq(温室气体排放预测2).应当进一步优化畜牧业饲养技术及条件来提高产业温室气体排放效率,科学合理的规划不同牲畜的饲养规模,优化牲畜饲养结构来降低畜牧业温室气体排放量.  相似文献   

15.
居民生活直接能源消费是重要的大气污染物和温室气体排放来源,识别其历史排放趋势是科学制定管控策略的基础.然而目前我国尚缺乏省级尺度居民生活能源消费排放趋势的研究.以广东省为研究对象,通过广泛收集居民生活直接能源消费数据和排放因子,建立了2006—2017年广东省居民生活直接能源消费大气污染物和温室气体排放清单,并采用情景分析法量化了能源结构变化对居民生活直接能源消费大气污染物与温室气体排放的影响.结果表明:①2006—2017年居民生活直接能源消费排放的大气污染物和温室气体均呈下降趋势,CO、PM2.5、BC、OC、CH4、CO2和N2O排放量分别下降70%、59%、59%、66%、77%、30%和73%;②城乡贡献上,乡村居民生活直接能源消费是大气 污染物和温室气体排放的主要来源,排放分担率分别在70%和60%以上;③空间分布上,2017年广东省居民生活直接能源消费大气污染物和温室气体排放主要集中在粤东、粤西传统燃料消费量较高的地区,以及广州、东莞和深圳等人口密度较大的城市地区;④能源结构清洁化所致的2006—2017年广东省居民生活直接能源消费大气污染物和温室气体减排比例为38%~88%;⑤以2025年为目标年,居民生活能源结构持续清洁化发展能够进一步降低居民生活直接能源消费大气污染物和温室气体排放,尤其对CO、PM2.5、BC、CH4和N2O的减排比例均在80%以上.  相似文献   

16.
由于挥发性有机物(VOCs)是O3生成的关键前体物,因此了解VOCs的污染特征以及主要来源对控制O3污染具有重要的意义.本研究于2019年9~10月在深圳市开展了在线VOCs观测,共计监测104个物种.观测期间,臭氧超标率达17.8%.TVOCs总浓度为38.9×10-9,污染日浓度明显高于非污染日.从大类物种来看,浓...  相似文献   

17.
农田NO排放的时间变异性   总被引:1,自引:1,他引:1  
在采用基于箱法的自动观测技术对苏州地区一个完整的科小麦生育期的麦田的NO排放进行全天候连续观测的基础上,讨论了NO排放的季节变化和日变化特征及其温度和植物生长的影响,观测实验发现,苏州地区上麦田的NO排放具有极其显著的季节变化规律怀,冬季以前2的小麦苗期物返青至淹水种稻之前的春季,NO排放量分别为0.156-0.758mg·m^-2·h^-1和1.229-10.802·m^-2·h^-1,前者是全  相似文献   

18.
基于投入产出法的北京能源消耗温室气体排放清单分析   总被引:2,自引:0,他引:2  
城市是一个巨大能源物资消耗体和温室气体排放体,相关研究受到广泛关注.本文以2007年为例基于投入产出法研究北京市能源消耗的温室气体排放量,计算得出CH4和N2O这两种常规温室气体排放量.结果表明,北京市2007年能源消耗温室气体排放量为3531.72万tCO2当量,其中CO2排放量为3514.40万t,CH4排放量为1734.32t,N2O排放量为435.83t.北京市工业部门仍然是主要的温室气体排放部门,其排放的温室气体占CO2总量的98.96%,CH4总量的88.48%和N2O总量的98.99%.不同最终使用部门中,政府部门消费产生的温室气体排放量超过总量的15%,高于城镇消费和农村消费之和;调出和出口部门的碳排放量超过总量的40%,所占比例最大.贸易中,隐含在调出和出口部门中温室气体排放量是隐含在调入和进口部门的十几倍.北京市不同行业的温室气体排放强度略优于全国水平.降低北京市温室气体排放量可从进一步优化产业结构,发挥科技减排的作用,提高不同产业的能源利用率等方面采取措施.  相似文献   

19.
碳中和是全球控制增温效应的主要手段,而准确估算碳排放是预测气候变化与实现碳中和的重要环节.水库是温室气体的重要排放源,由于受人为活动及水库运行方式的影响,水库温室气体排放量估算存在许多不确定性.本研究总结了水库主要温室气体(CH4、CO2和N2O)的产生与排放过程,重点分析了水库温室气体产生与排放的主要影响因素,包括水库库龄、位置和大小及有机物、温度、溶解氧、流速、水深和风速等;并通过分析水库建成前后水文情势的改变,探讨了水库建成对温室气体排放的可能影响.在此基础上,进一步提出未来水库温室气体排放有待研究的4个方面:水库系统扩散及冒泡通量的时空异质性、水库不同区域温室气体排放的差异性、多沙河流水库温室气体排放规律、水库建成前后温室气体排放情况对比,从而为更全面地评估水库温室气体排放提供依据.  相似文献   

20.
利用IVE模型和对杭州市机动车排放管理数据库大数据的分析,得到杭州市2015年各类机动车主要温室气体高分辨率排放清单,分析了排放分担情况及时间变化特征,并利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布.结果表明,杭州市道路移动源温室气体排放中CO_2、CH_4和N_2O的年排放量分别为818.11×10~4、0.85×10~4和0.07×10~4t,合计856.79×10~4t(以CO2当量计).从温室气体种类来看,CO_2占道路移动源温室气体排放总量的绝大部分,为95.5%;从机动车类型来看,小微型客车对道路移动源温室气体排放的贡献率最大,占72.8%;从道路类型的排放情况来看,杭州市市中心、城区、城郊和郊区中温室气体合计CO_2当量贡献率最高的均为主干路,分别为43.4%、61.8%、58.0%和42.4%.杭州市道路移动源温室气体排放强度均呈现由城市中心向城市边缘递减的趋势,同时温室气体排放量日变化特征明显,均出现弱双峰现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号