首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对机动车挥发性有机物(VOCs)排放特征研究中缺乏含氧VOCs(OVOCs)覆盖、缺乏最新国VI排放标准特征识别等问题,本研究选取了涵盖国I~国VI不同排放标准的轻型汽油车和国Ⅲ~国Ⅴ柴油车为研究对象进行底盘测功机测试,采用SUMMA罐和DNPH管采样相结合的方法,探究了不同排放标准下机动车尾气中VOCs排放特征的变化趋势及启动方式对VOCs排放特征的影响.结果表明,不同排放标准的轻型汽油车尾气组成呈现较大差异.随着排放标准的升级,烷烃、烯炔烃和芳香烃的质量比例逐渐减少,OVOCs逐渐增加,国Ⅰ~国IV轻型汽油车排放以烷烃和芳香烃为主,国V~国Ⅵ轻型汽油车排放以OVOCs为主.国VI轻型汽油车中OVOCs占比高达58.0%,其中,甲醛、乙醛和丙酮合计占47.3%.不同排放标准的柴油车尾气中VOCs均以OVOCs和烯炔烃为主,占79.0%~83.0%.此外,冷启动是机动车尾气VOCs排放的主要阶段,此阶段的VOCs排放因子显著高于热启动,但随着排放标准升级,柴油车在启动阶段的VOCs排放降幅仅有约40%,显著小于全工况排放降幅(77.5%),表明柴油车启动过程对VOCs排放贡献随排放标准升级逐步加大.本研究凸显了在我国机动车排放标准不断升级的背景下VOCs排放的重要性,需要在制定机动车VOCs排放控制策略中重点关注柴油车尾气中烯炔烃和汽油车尾气中OVOCs减排.  相似文献   

2.
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开。结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45.15±43.74)?10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%),卤代烃(17%),含氧挥发性有机物(OVOCs)(15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对二甲苯、丙烷、1,2-二氯乙烷以及丁酮。通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对二甲苯、异戊二烯、乙烯等。整个观测期间,有两次明显的生物质燃烧活动。国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57.65?10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著。分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点。双流区环境空气中VOCs受本地工业源排放影响较大。  相似文献   

3.
为探究近地层大气日间VOCs(挥发性有机物)垂直分布特征以及对臭氧(O3)生成的影响,2021年9月,在深圳市气象梯度塔的11个垂直梯度上开展了6轮VOCs离线罐采样,并应用气相色谱质谱联用仪对102种组分进行定量分析.结果表明,从地面(0 m)到高空(345 m)VOCs总体污染水平相近,近地层大气垂直混合较为均匀;但烯烃浓度随高度增加下降明显,主要受人为源排放的乙烯变化主导;高反应性的OVOCs(含氧挥发性有机物)在较高垂直梯度上(240~345 m)增长明显,可能是导致O3在高空浓度显著大于地面的原因之一.各垂直梯度上的臭氧生成潜势(OFP)占比排序均为:OVOCs>芳香烃>烷烃>烯烃>卤代烃>炔烃,乙酸乙酯、乙醛和甲苯是促进O3生成的优势物种.日变化方面,大多数情况下不同高度的总挥发性有机物(TVOCs)浓度均在9:00最高,推测主要受早高峰时段交通尾气排放影响;随着光化学反应的进行,OVOCs浓度在13:00达到最大,推动O3浓度于午间达到峰值.X/E(间,对...  相似文献   

4.
2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)μg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。  相似文献   

5.
成都双流夏秋季环境空气中VOCs污染特征   总被引:1,自引:4,他引:1  
邓媛元  李晶  李亚琦  吴蓉蓉  谢绍东 《环境科学》2018,39(12):5323-5333
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开.结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45. 15±43. 74)×10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%)、卤代烃(17%)、含氧挥发性有机物(OVOCs,15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对-二甲苯、丙烷、1,2-二氯乙烷以及丁酮.通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对-二甲苯、异戊二烯、乙烯等.整个观测期间,有两次明显的生物质燃烧活动.国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57. 65×10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著.分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点.双流区环境空气中VOCs受本地工业源排放影响较大.  相似文献   

6.
采用挥发性有机物(VOCs)在线监测仪(EXPEC 2000-MS)于2020年1月1日-2月11日对济源市环境空气中VOCs进行监测,分析了疫情防控前和期间TVOCs及其组分的变化特征、臭氧生成潜势(OFP)及来源解析.结果表明,疫情防控期间济源市TVOCs浓度均值为121.7×10-9,比疫情防控前增加了61.2%.烷烃、炔烃和烯烃的平均浓度和占比相对于疫情防控前明显减少,而卤代烃的平均浓度上升了79.5%,占比增加2.6%,OVOCs的平均浓度升高了5.5倍,占比显著增加了31.4%,主要来自乙醇、丙酮、三氯甲烷、溴甲烷和氯乙烷等化合物的排放.疫情防控前济源市的OFP主要以烯烃的贡献为主,关键活性物种为乙烯、1-丁烯、乙炔等,而疫情防控期间OVOCs对OFP的贡献不容忽视,关键活性物种主要是乙醇、乙烯、丙烯醛、甲苯等.用PMF模型法判断济源市VOCs的来源贡献,疫情防控期间对TVOCs贡献占比较高的来源依次是:燃烧源(33%)>消毒剂(31%)>工艺过程源(17%)>植物源(8%)>溶剂使用源(7%)、汽油车尾气(7%)>柴油车尾气(6%).受疫情的影响,机动车尾气、工艺过程和溶剂使用源对济源市TVOCs的贡献大幅降低,分别降低了17%、17%和10%,来自于消毒剂使用的乙醇、含氯的消毒剂(三氯甲烷、氯乙烷等)对济源市TVOCs的贡献明显增加了29%.  相似文献   

7.
由于挥发性有机物(VOCs)是O3生成的关键前体物,因此了解VOCs的污染特征以及主要来源对控制O3污染具有重要的意义.本研究于2019年9~10月在深圳市开展了在线VOCs观测,共计监测104个物种.观测期间,臭氧超标率达17.8%.TVOCs总浓度为38.9×10-9,污染日浓度明显高于非污染日.从大类物种来看,浓度从高到低依次为烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈,臭氧生成潜势(OFP)中芳香烃、OVOCs以及烯烃贡献较大.由PMF源解析模型分析结果可知,VOCs主要来源包括生物质燃烧、汽油挥发、机动车尾气、工业过程以及溶剂使用等,而其中对OFP贡献较大的排放源为溶剂使用(45.8%)、机动车尾气(27.3%).臭氧污染日发生时,清晨低风速可能导致了机动车尾气与汽油挥发源在交通早高峰快速积累,而当日高温亦会加快汽油源与溶剂源组分挥发并促进光化学反应.  相似文献   

8.
整车制造行业是挥发性有机物(VOCs)的重要来源之一,本文选取运城市某一整车制造企业,通过GC-MS分析了71种VOCs组分,识别了VOCs浓度及组分特征,并对源反应性(SR)进行了评估.结果表明,不同生产环节废气中VOCs浓度水平和组分差异较大,烘干环节排放VOCs组分主要为烷烃,占该环节VOCs排放的45%以上.喷漆和补漆环节排放组分主要是芳香烃和OVOCs.无组织排放涂装车间以烷烃(45%)和芳香烃(27%)为主,调漆车间主要为烷烃(78%).该企业排放VOCs的SR值范围为0.81~3.83 g·g-1,甲苯、乙苯、间对二甲苯、1,3,5-三甲苯等芳香烃和部分OVOCs具有较高的反应活性,因此该企业应重点控制活性较大的组分排放,从源头控制O3的生成.  相似文献   

9.
采用PF-300便携式甲烷、总烃、非甲烷总烃测试仪对烧结杯实验产生的烟气进行挥发性有机物含量分析,研究了烧结燃料焦煤比对烟气挥发性有机物排放特性的影响,结果表明:挥发性有机物在烧结过程中持续释放,其排放趋势与NOx相一致;TVOCs和MHC的生成与煤粉和焦粉的挥发分有显著的相关性,以煤粉为主要燃料时,适当配加焦粉不仅对TVOCs和MHC具有物理减排效应,还存在煤焦混合协同减排的效应.同时对国内某钢铁烧结机进行TVOCs排放浓度及分样组成检测,表明:该钢铁烧结机烟气中挥发性有机物排放浓度较高,其结果与烧结杯实验所得曲线一致;烧结工序VOCs分样检测主要化合物为乳酸乙酯、丙酮、苯、甲苯、正己烷等.  相似文献   

10.
位于广西柳州市郊区的柳城县存在突出的臭氧(O3)污染问题,但目前尚未有当地O3污染成因分析的相关报道.为探究其O3污染成因,在2021年10月1~15日开展了116种挥发性有机物(VOCs)的在线连续观测,并对O3敏感性进行分析.结果表明,观测期间φ[总挥发性有机物(TVOCs)]平均值为27.52×10-9,其中污染过程(10月1~6日)φ(TVOCs)的平均值为32.15×10-9,比非污染过程(10月8~15日)高32.79%.从物种浓度来说,含氧挥发性有机物(OVOCs)贡献最高,贡献率为43.70%,其次是烷烃(23.00%)、芳香烃(11.75%)和卤代烃(7.35%).从臭氧生成潜势(OFP)来说,OVOCs对OFP的贡献率最高(41.96%),其次是芳香烃(32.60%)和烯烃(17.92%).观测期间VOCs主要来自机动车排放(32.44%)、生物质燃烧源(29.31%)、溶剂使用源(16.43%)、植物源(11.34%)和化工企业排放(...  相似文献   

11.
选取塑胶零件、印刷线路板及主板3类消费电子产品部件为研究对象,利用活性炭管采样,样品溶剂解吸后采用GC/MS分析,获得了各排气筒及车间内VOCs含量水平与组分特征.通过计算排放量,得出了分物种VOCs排放系数.结果表明,塑胶零件生产线排气筒总挥发性有机物(TVOCs)浓度为48.01~115.05 mg·m-3,印刷线路板为6.08~11.36 mg·m-3,主板为29.81~30.21 mg·m-3.塑胶零件生产车间内TVOCs浓度为4.23~120.58 mg·m-3,印刷线路板为1.50~2.02 mg·m-3,主板为7.01~9.93 mg·m-3.环烷烃类、酯类、苯类为主要排放物质.对于不同产品生产线的排气筒及车间废气,浓度和物种均有很大差异;对于相同产品,浓度有差异但物种基本相同.按产品分类,共计算得出了36个分物种VOCs排放系数,其中,塑胶零件、印刷线路板及主板TVOCs排放系数分别为0.626 kg·kg-1涂料用量、0.123 kg·kg-1油墨用量、0.028 kg·kg-1印刷线路板用量.通过排放量计算结果分析,3种产品中,塑胶零件生产为VOCs主要排放源,车间内无组织排放为主要排放方式.  相似文献   

12.
焦化厂因其工艺特殊,SO2、NOx、颗粒物及VOCs的排放问题较为突出。故对焦化厂厂界环境空气VOCs排放特征进行分析,并依据最大增量反应活性(MIR)法和等效丙烯浓度(PEC)法对VOCs的臭氧生成潜势(OFP)进行评估,依据气溶胶生成系数(FAC)法对VOCs二次有机气溶胶生成潜势(SOAFP)进行评估。结果表明:1)厂界上、下风向5个点位共分析出包括芳香烃、卤代烃、烯烃、硫化物、酮类在内的17种VOCs; 2)不同区域厂界检出的VOCs差异显著,总质量浓度为28.2~167.9μg/m3,其中芳香烃在各点位TVOCs中占比最大,达到51.01%~84.63%;3)脱硫提盐冷鼓区域边界OFP最大,理论值为335.51μg/m3,办公生活区边界OFP最小,理论值为47.06μg/m3,芳香烃对OFP贡献率为27.21%~62.37%,烯烃为39.17%~61.84%,卤代烃为2.08%~14.56%;通过PEC法估算OFP,结果变化趋势与MIR法结果相一致,等效丙烯浓度为3.11~31.89μg/m3;且1—5点位芳香烃的等效丙烯浓度贡献率分别为37.10%、51.46%、66.79%、58.80%和22.74%;4)1—5点位SOAFP分别为0.452,0.938,2.517,4.055,0.495μg/m3;芳香烃对SOAFP贡献最大。丙烯、甲苯、二甲苯、氯乙烯等质量浓度和反应活性均较大的物质,是需要优先控制的VOCs组分,可作为焦化厂环境空气VOCs的标志物。  相似文献   

13.
2018年8~9月,利用深圳市铁塔的11个垂直梯度平台进行了9轮挥发性有机物(VOCs)不锈钢罐采样,并应用气相色谱质谱联用仪(GC/MS)对103种VOCs组分进行定量分析,研究不同垂直高度上VOCs组分特征及对近地面臭氧(O3)生成的影响.结果表明,从地面到345m高空VOCs总体污染水平相近,在垂直梯度上变化不大;但烯烃浓度随高度上升呈现下降趋势,主要受地面天然源排放的异戊二烯主导.结合典型物种及物种对的分析发现,日间的二次生成、工业排放和光化学反应消耗是影响垂直梯度上VOCs浓度变化的主要原因.应用混合层梯度方法对VOCs通量进行计算发现,烷烃(28%)和芳香烃(23%)的通量贡献最多;二氯甲烷(1.93±0.29)mg/(m2·h)、甲苯(1.86±0.39)mg/(m2·h)具有较高的垂直通量值.结合二氧化氮(NO2)和O3垂直廓线的关系分析得出,总挥发性有机物(TVOCs)/NO2在300m以上高空达到峰值,更加有利于O3  相似文献   

14.
通过苏玛罐采样和GC-MS/FID分析系统,测定了山东地区典型胶合板制造企业的VOCs排放特征.结果表明,烷烃(13.81%~39.16%)、含氧VOCs(5.68%~36.06%)和芳香烃(3.58%~48.12%)是热压和涂胶工艺主要排放成分,废气排口以含氧VOCs(6.49%~83.88%)排放为主,不同工艺环节的特征VOCs组分各有不同;烯炔烃(27.12%~39.38%)和芳香烃(32.47%~45.63%)是热压工艺和涂胶工艺的高OFP组分,废气排口则以含氧VOCs(52.82%)对O3生成贡献最大;基于SOAP评估,各环节均以芳香烃类化合物(97.08%~98.03%)为主要活性组分;测得山东地区胶合板制造行业VOCs排放因子为0.89g VOCs/m3胶合板.  相似文献   

15.
2021年2~4月,利用AQMS-900VCM大气挥发性有机物在线监测系统对南昌市经济技术开发区大气中114种挥发性有机化合物(VOCs)进行了在线观测,分析了春季南昌市大气中VOCs浓度水平、日变化,估算了各种VOCs的臭氧生成潜势(OFP),并基于PMF模型探讨了 VOCs的来源.结果表明,南昌市经济技术开发区20...  相似文献   

16.
随着目前人们对室内空气质量要求的不断提高,家具板材作为影响室内空气质量的VOCs(挥发性有机物)排放源,也逐渐受到重视.采用500 L静态箱,使用PTR-TOF-MS(质子转移反应-飞行时间质谱)对市售六类家具板材排放的VOCs进行测定,分别进行排放速率与排放平衡试验得到板材的排放特征与排放成分谱,并估算其排放因子.结果表明:①集成材、胶合板、细木工板、刨花板、密度板、实木地板8 h排放的ρ(TVOC)(TVOC为总挥发性有机物,total volatile organic compound)平均值分别为0.76、0.39、0.42、0.68、0.17、0.23 mg/m3,各类板材主要排放物种分别为甲苯、甲醛、甲醛、正壬烷、甲醇、甲醛,其质量浓度平均值分别为0.23、0.23、0.13、0.35、0.04、0.06 mg/m3.②排放平衡试验中焕城胶合板、吉林松木集成材、凯越密度板及时代刨花板TVOC的排放因子分别为3.63、10.63、0.51、2.07 g/m3.③板材排放VOCs成分谱中,焕城胶合板主要排放物种为丙烷、乙烷、甲醛、甲醇,其排放占比分别为18.57%、4.73%、19.74%、17.83%;吉林松木集成材主要排放物种为甲苯,其排放占比为43.27%;凯越密度板主要排放物种为乙烷与甲醛,其排放占比分别为26.44%、19.42%;时代刨花板主要排放物种为甲醛与甲醇,其排放占比分别为40.16%、31.55%.研究显示,各类板材VOCs排放特征、排放成分谱及排放因子均存在较大差异,部分板材VOCs排放量较大,需加强行业标准的规范化.   相似文献   

17.
采用1m3的小型环境模拟舱,测试了不同温度和装载度条件下胶合板、密度板、细木工板和复合地板中甲醛释放规律.研究发现:甲醛浓度在初始阶段(0~3h)均迅速增大,随后速度慢慢减小,最后浓度趋于恒定值;温度升高会促进板材内甲醛释放,温度每升高5 ℃,甲醛释放量会增加10%~30%;而装载度增大则会减少单位体积板材内甲醛的释放量.利用不同装载度条件下板材在密闭环境舱散发过程和平衡状态浓度,求解了影响板材释放特性的关键释放参数:可散发初始浓度Cm,0、扩散系数Dm和分配系数K;模拟计算的浓度结果与实验测试数据吻合良好,为研究板材甲醛释放规律提供了一种有效手段.  相似文献   

18.
北京市城区春季大气挥发性有机物污染特征   总被引:10,自引:1,他引:10       下载免费PDF全文
"2+26"城市联防联控措施的实施及北京市产业结构的调整,使得北京市大气中VOCs(volatile organic compounds,挥发性有机物)质量浓度、组成特征及来源发生了变化.运用AirmoVOC(GC-866)在线自动监测仪对2017年3-5月北京市城区大气中的VOCs进行观测.结果表明:①北京市城区春季大气中ρ(TVOCs)(TVOCs为总挥发性有机物)为34.36 μg/m3,ρ(烷烃)、ρ(芳香烃)、ρ(烯烃)、ρ(炔烃)分别占ρ(TVOCs)的57.13%、33.18%、7.54%、2.15%.质量浓度最高的前3位VOCs物种分别为苯、丙烷和乙烷,其质量浓度分别为5.97、3.51、2.63 μg/m3.②ρ(TVOCs)的日变化有3个较明显的峰值,分别出现在05:00、11:00和23:00,ρ(TVOCs)最低值出现在18:00,并且夜间ρ(TVOCs)高于白天.VOCs日变化特征表明,北京市VOCs污染受凌晨时段柴油车尾气排放和早晚交通高峰期汽油车尾气排放的影响较为明显.③春季VOCs的OFP(ozone formation potential,臭氧生成潜势)分析表明,芳香烃对OFP的贡献率(44.22%)最大,其次是烯烃(31.06%),最后是烷烃(23.86%);北京市VOCs污染的关键活性组分是丙烯、正丁烷、环戊烷、苯、甲苯、二甲苯.④PMF(正矩阵因子分析法)分析表明,溶剂使用源是北京市春季大气中VOCs最主要的排放源,对TVOCs的贡献率为39.06%,其次是移动源(33.79%)和油气挥发源(17.85%),燃烧源的贡献率(9.30%)最低.研究显示,控制移动源、溶剂使用源和燃烧源的排放是控制北京市环境空气中VOCs污染的关键.   相似文献   

19.
涡轮螺旋桨飞机广泛应用于军事和民用通用航空领域,其发动机排放对区域大气VOCs浓度会产生重要影响,而我国目前几乎没有针对航空涡轮发动机VOCs排放的观测研究.基于此,本研究于2017年9月9日、14日和15日在北京沙河机场停机坪,利用质子迁移反应飞行时间质谱仪(PTR-TOF-MS)对运-12飞机涡轮发动机地面开车过程尾气中16类VOCs的排放开展了观测分析.结果表明,3次排放实验中VOCs的相对组成特征具有很高的一致性,甲醛和异戊二烯是占VOCs总浓度最高的两种物质,占比分别为30%和15%,乙醛、9碳芳香烃、10碳芳香烃和单萜的浓度占比在6%~8%之间,其它10种VOCs每种的占比都低于5%.发动机尾气中的VOCs与甲醛浓度具有很好的线性关系.VOC与甲醛排放量的比值与国外研究结果比较接近的VOCs有甲醇、乙醛和丙酮,比值分别为0.18、0.38和0.16 g·g-1,而芳香烃类物质与甲醛排放量的比值明显高于国外排放实验的结果.因此,未来有必要开展更多的研究以增进对国内航空发动机VOCs排放的认识.  相似文献   

20.
于2019年11月6~9日开展了深圳全市11点位105种VOCs组分的离线观测,评估了深圳市不同区域的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)的空间分布特征.结果表明:观测期间深圳市总VOCs,总OFP和总SOAFP分别为44.3×10-9,272.6和1.1μg/m3.从空间分布来看,VOCs,OFP与SOAFP具有相似特征,均呈现西高东低,北高南低的趋势,西北部工业区存在较多工业排放源,是削减VOCs的关键区域.从物种组成来看,体积浓度较高的物种有丙酮、二氯甲烷、乙烷;OFP较高的物种有1,3-丁二烯、甲苯、乙醛;SOAFP较高的物种有甲苯和二甲苯;且甲苯/苯比值表明溶剂排放等工业源对VOCs影响显著.从空间分布差异来看,正丁烷、甲苯和2,3-二甲基丁烷区域差异性较大.综合以上分析得出,正丁烷、异丁烷、甲苯、二甲苯和1,3-丁二烯作为化学活性较高且本地排放特征最显著的物种,是深圳市区域性O3和PM2.5协同防治的关键VOCs组分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号