首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
张淼  丁椿  李彦  王桂霞  林晶晶  孟赫  许杨 《环境科学》2021,42(12):5723-5735
为认识山东省环境空气中O3的污染现状,基于2015~2019年国省控环境空气自动监测站的O3监测数据、2019~2020年4~9月气象代表站的气象数据及邻近环境空气站的O3监测数据,探究了山东省O3时空分布特征及与气象因素的关系.结果表明,山东省O3污染日益突出,年均ρ(O3-8h)(90百分位)和ρ(Ox)(O3 与NO2之和)升高速率分别为7.6μg·(m3·a)-1和7.0μg·(m3·a)-1,年均ρ(PM2.5)、ρ(CO)(95百分位数)和ρ(NO2)均逐步下降,下降速率均小于ρ(O3)上升速率.03污染呈现夏季高冬季低的"M型"或"倒V型"月变化特征,在6月或9月达到峰值,且污染月呈提前出现趋势.山东省年均ρ(O3-8h)(90百分位)呈现"内陆高,沿海低"的特点,并有区域均匀性发展趋势.相关性分析表明,山东省ρ(O3-8h)总体与日最高温度呈正相关,与相对湿度、气压和风速呈负相关,其中日 最高温度和相对湿度是O3-8h主控气象因子,气象因素对不同城市O3-8h超标率的影响具有显著差异.  相似文献   

2.
南洋  张倩倩  张碧辉 《环境科学》2020,41(2):499-509
为探究中国典型区域地表PM_(2.5)浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM_(2.5)浓度网格化数据进行分析.典型区域多年平均PM_(2.5)浓度从高到低:华东华中地区(40. 5μg·m~(-3))华北地区(37. 4μg·m~(-3))华南地区(27. 8μg·m~(-3))东北地区(23. 7μg·m~(-3))四川盆地(22. 4μg·m~(-3)).东北地区PM_(2.5)年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM_(2.5)浓度空间分布上,PM_(2.5)浓度分布呈现显著的空间差异,多年来各区域PM_(2.5)浓度高值分布相对稳定. PM_(2.5)浓度变化的单因素GAM模型中,所有影响因素均通过显著性检验,典型区域中对PM_(2.5)浓度变化影响解释率较高的各个影响因素顺序有所不同. PM_(2.5)浓度变化的多因素GAM模型中,均呈现非线性关系,典型区域方差解释率为87. 5%~92%(平均89. 0%),模型拟合度较高,对其变化有显著性影响.典型区域YEAR和LON-LAT均对PM_(2.5)浓度变化影响最为显著.除此之外,气象因子对PM_(2.5)的影响大小在各个区域存在不同.东北地区影响PM_(2.5)最重要的3个气象因子排序为:tp v_(10) ssr;华北地区为:temp tp msl;华东华中地区为:temp tp ssr;华南地区为:temp RH blh;四川盆地为:tp temp u_(10).结果表明,运用GAM模型,能够定量分析区域PM_(2.5)浓度长期变化的影响因素,对PM_(2.5)污染评估具有重要意义.  相似文献   

3.
PM_(2.5)作为大气污染的一种,正受到社会越来越广泛的关注和研究,但大部分研究仅单独分析各样点PM_(2.5)浓度时间维度或空间维度特征,忽略了PM_(2.5)的时空维度变化。为综合考虑PM_(2.5)时空维度特征,该文以山东省2014年PM_(2.5)浓度监测数据为对象,建立PM_(2.5)时空变异模型,利用时空克里格法对山东省全年PM_(2.5)浓度进行时空预测,得到时空分布立方体数据,最后基于该数据,对山东省PM_(2.5)污染特征作出分析。结果表明,2014年山东省整体PM_(2.5)污染严重。在空间上,中西部地区PM_(2.5)浓度超过75μg/m~3的天数超过290 d,存在持续性高危污染,东部小于37.5μg/m~3的天数超过146 d,存在间歇性轻微污染,且从西至东,PM_(2.5)污染天数和程度逐渐降低,具有明显地域性污染特征;在时间上,PM_(2.5)浓度最高时间段为1、2、11和12月,最低为6-8月,各季节污染程度依次为:冬季秋季春季夏季。研究表明时空地统计方法能够有效地对空气质量进行时空预测,是挖掘更多的时空分布特征和信息,进行环境数据分析的有效手段。  相似文献   

4.
构建PM_(2.5)浓度与相关因子的关系模型已成为获取干旱区经济带连续变化PM_(2.5)浓度数据的有效手段之一。本文以天山北坡经济带为研究对象,基于PM_(2.5)浓度监测数据、中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)的气溶胶光学厚度数据(aerosol optical depth,AOD)和气象数据,利用地理加权回归模型(geographically weighted regression,GWR)反演了研究区2018年3~11月PM_(2.5)浓度,进而分析其时空变化特征。结果表明:(1)相比多元回归模型(multiple linear regression,MLR),GWR模型在天山北坡经济带的PM_(2.5)浓度反演效果更优,决定系数R2、平均绝对误差MAE和均方根误差RMSE分别为0.897、4.569μg/m~3和5.627μg/m~3,明显优于MLR模型的0.819、5.825μg/m~3和7.731μg/m~3;(2)天山北坡经济带PM_(2.5)浓度在月尺度上呈"凹字型"变化特征,其中11月最高,达到59.50μg/m~3,3月和10月次之,9月最低,仅为17.92μg/m~3;在季节尺度上表现出秋季(9~11月)春季(3~5月)夏季(6~8月)的变化特征,其中春季呈波动下降趋势,夏季总体维持在较低水平,秋季呈急剧上升趋势;(3)在空间分布上,研究区PM_(2.5)浓度呈现出"东高西低"的特征,峰值出现在乌鲁木齐附近,说明经济带东部地区PM_(2.5)污染相对严重,尤其是乌鲁木齐。  相似文献   

5.
近年来,我国臭氧(O3)浓度呈升高趋势,成为仅次于PM2.5影响空气质量的重要因素.为掌握长三角地区蓝天保卫战实施期间O3时空变化特征和人群健康影响,采用莫兰指数和冷热点空间统计方法分析了长三角地区2017~2020年210个监测站点O3浓度时空特征,并利用健康风险和环境价值评价法评估了长三角区域人群O3暴露水平变化的健康收益.结果表明,2017~2020年,长三角地区O3年均值和暖季均值的四分位数范围(IQR)呈现从高浓度向低浓度位移的趋势.暖季和冷季O3浓度均值均呈现北高南低的空间分布态势.暖季O3浓度均值在长三角北部和中部腹地城市出现高浓度O3集聚的特征.区域O3年均暴露浓度超过160μg·m-3及以上的人口比例由2017年的72.3%降低至2020年的34.8%.三省一市人口加权年均O3暴露浓度总体呈现下降趋势,但长三...  相似文献   

6.
牛笑笑  钟艳梅  杨璐  易嘉慧  慕航  吴倩  洪松  何超 《环境科学》2023,44(4):1830-1840
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3  相似文献   

7.
焦炉顶和厂区环境中有机碳和元素碳的粒径分布   总被引:1,自引:0,他引:1  
刘效峰  彭林  白慧玲  牟玲  宋翀芳 《环境科学》2013,34(8):2955-2960
为了明确焦炉顶和厂区环境空气颗粒物中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的污染特征,利用美国Staplex234大流量采样器(粒径:≤1.4μm、1.4~2.1μm、2.1~4.2μm、4.2~10.2μm、≥10.2μm)采集焦炉顶和厂区的环境空气颗粒物样品,并用德国Elementar Analysensysteme GmbH vario EL cube分析其中的OC和EC组分.结果表明,焦炉顶TSP中ρ(OC)和ρ(EC)分别为291.6μg·m-3、255.1μg·m-3,厂区ρ(OC)和ρ(EC)分别为377.8μg·m-3、151.7μg·m-3;厂区≤1.4μm颗粒物中二次有机碳(secondary organic carbon,SOC)的质量浓度为147.3μg·m-3;焦炉顶≤2.1μm颗粒物中ρ(OC)/ρ(EC)值为1.3.厂区TSP中ρ(EC)低于焦炉顶,ρ(OC)明显高于焦炉顶,且厂区≤10.2μm颗粒物中ρ(OC)、ρ(EC)远高于焦化厂所在地区环境空气;焦炉顶和厂区的OC、EC均主要富集在细颗粒物中,焦炉顶和厂区OC的粒径分布差别较大,厂区比焦炉顶OC的粒径分布更趋向于向细颗粒物分布,焦炉顶和厂区EC的粒径分布相似;厂区粒径≤10.2μm颗粒物中,随着粒径的减小,ρ(SOC)和SOC对OC的贡献均呈增大的趋势.  相似文献   

8.
利用中国环境监测总站的PM_(2.5)(Particulate Matter with aerodynamic≤2.5μm)数据、ERA-interim再分析资料等,结合混合单粒子拉格朗日综合轨迹模型(HYSPLIT4),重点分析了华北地区PM_(2.5)的时空分布特征及该地区PM_(2.5)重污染对我国东北、长三角地区空气质量的影响。结果表明,华北地区是中国PM_(2.5)的高值区,2015、2016和2017年华北地区年平均PM_(2.5)质量浓度分别为62.1、59.5和56.8μg/m~3,呈减小趋势。该地区冬季PM_(2.5)污染最严重,部分区域的平均浓度甚至超过110μg/m~3。个例研究表明,来自华北的污染物可在大约48 h后输送至东北和长三角地区,分别占当地污染物总量的21%和71%;同时,在冬季弱高压系统和地形的共同影响下,华北地区42%的污染物不易扩散而局限在本地,15%的污染物向长三角方向输送,不易向东北方向输送。  相似文献   

9.
近些年来湖南省臭氧(O3)污染程度呈现持续恶化态势,针对该区域O3污染相关研究较为缺乏的现状,基于观测数据对2015~2020年期间湖南省14个地级市O3污染浓度的时空演化特征进行了分析,并利用广义相加模型(GAM)对O3污染长期趋势变化的主控因素进行了识别(气象校正).结果表明,时间上,湖南省区域O3具有明显的日际、...  相似文献   

10.
刘涛涛  王勇辉  刘西刚 《环境工程》2019,37(12):153-160
以山西省各环境监测站点的SO_2浓度日均值为数据基础,结合风速、降水量、气压、气温、人均GDP、原煤产量、工业产值、火力发电量、NO、O_3、CO等自然、人文相关指标,利用空间插值和主成分分析法对SO_2时空变化进行解析。结果表明:1) 2015年1月—2018年12月山西省SO_2浓度整体较高,年均分别为61,66,56,32μg/m3,平均每年下降13μg/m3。季节变化呈"冬春高,夏秋低"的变化趋势。月变化呈"U"形,7—8月空气质量均>20μg/m3。2)空间分布结果显示为"中南高,北部低",其中晋中市、临汾市、太原市污染较为严重,平均每年下降13,19,23μg/m3,超标日数主要集中在晋中市。3)主成分分析表明,SO_2浓度为7. 27~14. 9μg/m3,其中降水和风速对其贡献度最大,且随着浓度的增加其影响力逐渐减小。风速、降水、温度为影响山西省SO_2浓度时空变化的自然因素,人均GDP、工业产值、火力发电量为主要的人为因素。时空变化及影响要素分析表明:污染物主要集中于经济水平相对较高、工业发展速度较快和人口相对密集地区,人类活动对SO_2浓度贡献度较大,但气象要素对污染物时空变化和位移影响不可或缺,其中风速和降水对大气中的SO_2等污染物抑制性较强。  相似文献   

11.
基于2014~2017年江苏省13个市的PM2.5浓度和O3_8h_max数据,探讨了其时空分布特征.在此基础上,研究了日益升高的近地层O3浓度与气象因子的关系.结果表明:江苏省2014~2017年PM2.5浓度整体上呈下降的趋势,年均浓度减少率为6.06μg/m3,而O3_8h_max整体上呈上升趋势,年均浓度增长率为3.84μg/m3.总体上,PM2.5浓度呈现冬春高、夏秋低的V型月变化特征,O3_8h_max则基本呈现不规则的M型,在5月份达到峰值后逐渐降低,又在7~9月份保持平缓,而后又逐渐下降.空间上,江苏省PM2.5浓度呈现"内陆高,沿海低"的状态,而O3_8h_max却呈现"沿海高,内陆低"的状态.与气象因子的相关性表明,O3浓度与气温和太阳辐射呈正相关关系,与相对湿度呈负相关关系,太阳辐射对O3浓度的影响最大,其次是温度和相对湿度.当日平均气温在20~30℃、相对湿度在50%~70%、太阳辐射强度高于150w/m2时O3浓度容易出现超标.  相似文献   

12.
针对2013~2019年上海地区气温相对偏低(25℃及以下)的一类O3污染事件,从时间分布特征、天气系统类型、气象成因等方面进行了深入分析.结果表明:上海近7a偏低气温下的O3污染按小时标准和日标准分别出现45h和19d,占各自O3污染总次数的5.0%和7.3%,在春季则上升至20.6%和20.0%,是上海春季主要O3污染现象之一.当气压介于1010.1~1017.1hPa、风速介于2.1~3.2m/s、湿度介于40.0%~54.0%、辐射介于0.5~2.7MJ/m2,较易出现偏低气温下的O3污染;与高温下的O3污染相比,出现偏低气温下的O3污染时,气压、PM2.5和NO2浓度分别偏高了10.0hPa、26.0μg/m3和24.9μg/m3,辐射偏低了0.5MJ/m2.造成偏低气温下的O3污染天气类型可以分为弱高压前部、弱高压控制和海上高压后部3种.3个典型污染个例分析显示,上游输送、本地静稳辐合和垂直逆温条件分别是这3种类型的主要气象成因.  相似文献   

13.
基于2015~2019年广州4个不同国控站点类型的大气污染物监测数据,研究了广州各站点类型颗粒物(PM2.5)和臭氧(O3)的污染特征,并分析了O3污染季节和PM2.5污染季节PM2.5和O3的相关性及相互作用.结果表明:2015~2019年广州各站点类型PM2.5浓度总体呈下降趋势,O3浓度呈上升趋势.不同污染季节PM2.5与O3浓度均呈正相关.O3污染季节二次PM2.5的生成对颗粒物的影响显著大于一次PM2.5,随着光化学水平的升高,一次PM2.5的贡献浓度基本不变(均在21.03~31.37μg/m3范围内),贡献率逐渐下降;而二次PM2.5的贡献浓度逐渐升高(3.51~7.72 μg/m3升高到16.04~18.45μg/m3),贡献率也逐渐升高(11%~27%升高到34%~44%),且呈倍数增加.不同站点类型贡献差异明显,背景站点二次PM2.5的贡献最大,城区站点在中和高光化学水平下二次PM2.5的贡献最小;PM2.5污染季节各站点类型在不同PM2.5污染水平下O3浓度均具有差异性,总体上均呈现背景站点>郊区站点>城区站点的特点.气溶胶的消光作用和非均相反应均显著促进O3生成,随着PM2.5浓度升高,各站点类型的O3浓度峰值逐渐升高,由62.12~83.82μg/m3升高到92.49~135.4μg/m3;O3变化率峰值也逐渐升高,由8.42~10.02μg/(m3·h)升高到21.33~27.04μg/(m3·h).进一步促进了广州PM2.5和O3浓度的协同增长.  相似文献   

14.
2018年1月华北平原经历了一段持续时间久、影响范围广和颗粒物浓度高的重污染时期.本研究通过SMPS+E扫描电迁移率粒径谱仪,选取华北平原南部某郊区点位,对此次重污染期间颗粒物数浓度粒径分布演化进行连续观测研究.结果表明,观测期间环境空气质量尤其是PM2.5平均浓度为141.32 μg/m3.大气亚微米颗粒物数浓度主要集中在核模态和爱根核模态的超细粒径段(78.9%),呈递减型单峰分布,颗粒物平均数浓度为83174cm-3.重污染天时,核模态颗粒物数浓度明显增高,对应低风速(1.5±0.4)m/s、高相对湿度(90.8±4.5)%和低O3浓度(15.8±8.3)μg/m3.48h后向轨迹显示,观测点位气溶胶主要受湖北省、陕西省和山西省临近省份的传输影响.潜在源贡献因子法和浓度权重轨迹表明,气溶胶潜在源区主要为本地源和观测点位以北的区域.  相似文献   

15.
于夏末秋初在深圳市城市和郊区开展了大气OH自由基观测,结果显示OH自由基日间峰值平均浓度分别为6.0×106cm-3和5.9×106cm-3,与国内外其他地区相比处于中等水平.基于实测数据构建了拟合效果较好的本地化OH自由基参数化公式,应用于广东省OH自由基空间分布的表征,并进一步利用日间OH和NO2浓度之积反映光化学反应活性(AP).结果发现,2018年夏秋季广东省大气光化学反应活性总体上呈现珠江三角洲较高,AP达10.1×107μg/(m3·cm3),粤东、粤西、粤北地区较低的分布态势,AP分别为5.4×107, 5.9×107和7.7×107μg/(m3·cm3);同期的PM2.5和O3高值区域也集中在珠江三角洲,说明了调控光化学反应活性对珠江三角洲协同控...  相似文献   

16.
为了解石家庄市主城区O3(臭氧)污染特征及其影响因子,基于2015-2018年石家庄市空气质量连续监测资料和同期气象数据分析了主城区O3污染总体特征及气象成因.结果表明:①石家庄市主城区大气光化学污染日益严峻,ρ(O3)日均值由2015年的47 μg/m3增至2018年的66 μg/m3,ρ(O3)超过GB 3095-2012《环境空气质量标准》二级标准限值的天数由2015年的20 d增至2018年的70 d.②ρ(O3)存在明显的季节性差异,呈夏季[(89±33)μg/m3] >春季[(69±25)μg/m3] >秋季[(40±26)μg/m3] >冬季[(28±16)μg/m3]的特征;ρ(O3)日变化呈单峰型分布,谷值出现在06:00-07:00,峰值出现在15:00-16:00,且15:00-17:00是ρ(O3)超标的高发时段.③ρ(O3)与气温呈指数关系,当气温为20~25、25~30、≥ 30℃时,ρ(O3)日均值分别为75、90及119 μg/m3.ρ(O3)在相对湿度为60%时存在拐点,当相对湿度≤ 60%时,ρ(O3)随相对湿度的增大而上升;当相对湿度>60%时,ρ(O3)随相对湿度的增大而下降.风速与ρ(O3)呈分段线性关系,当风速 < 2 m/s时,ρ(O3)随风速的增加而上升;当风速≥ 2 m/s时,ρ(O3)随风速的增加而下降.④影响石家庄市主城区ρ(O3)升高的污染源主要位于其东-东南-南方位,其次为东北-东方位,而西部和北部地区则较少.⑤石家庄市主城区ρ(O3)超标多发生在气温>20℃,相对湿度介于40%~70%之间,风速在1.5~3.0 m/s之间的气象背景下,经统计,当气象条件同时符合上述三项气象要素时,ρ(O3)超标天数占3-10月总超标天数的66.5%.研究显示,气温>20℃、相对湿度为40%~70%、风速为1.5~3.0 m/s的气象条件可初步作为石家庄市主城区O3污染的预警指标.   相似文献   

17.
利用相似集合预报技术(AnEn),采用2a的睿图-化学子系统(RMAPS-CHEM)历史预报结果和观测资料,对2018年6月1日~9月30日模式在京津冀地区13个城市共70个国控站点逐小时预报的O3浓度进行了释用订正研究,结果表明:随着集合成员数的增加,AnEn方法的预报效果呈现出先上升后下降的趋势,并且越过临界集合成员数后,预报效果逐渐降低,因此确定14为最优集合成员数.不同预报因子的权重敏感性不同,其中以RMAPS-CHEM本身预报的O3权重最高,其它依次为2m温度、2m相对湿度、10m风速和边界层高度.经过AnEn方法的释用订正,有效降低了O3浓度的预报误差.AnEn方法对O3浓度的时空变化趋势以及浓度值大小都有很好的订正效果,从所有站点的检验结果来看,AnEn方法订正后的O3浓度与观测值之间的相关系数较模式结果提升68.6%,均方根误差降低25%.AnEn方法对O3预报释用订正的效果存在明显的区域特征和日变化特征,白天时段对预报的提升主要集中在京津冀东部地区和大城市地区,夜间主要是在城市地区更加显著;AnEn方法夜间的订正效果优于白天,部分站点夜间提升效果(相关系数)超过250%.AnEn方法订正后的O3概率密度函数整体更接近实况,特别是在O3的低值区(35μg/m3以下)和高值区(200μg/m3以上)订正效果更佳.针对典型O3污染过程中北京、天津、石家庄3个城市的对比检验表明,AnEn方法在0~48h的预报时效内表现优于48~96h.不同城市体现出一定的区域差异,天津最优,北京和石家庄次之.AnEn方法对RMAPS-CHEM预报的O3浓度订正效果整体改善明显,可以在区域光化学污染数值预报工作中进行更加广泛的应用.  相似文献   

18.
将机器学习中的梯度提升回归树(GBRT)算法应用到中国地区地面O3浓度制图中,利用地面O3浓度观测数据,结合WRF气象数据、MODIS植被归一化指数以及高程人口数据建立训练预测数据集.通过反向变量选择法选取模型最佳特征变量对其进行训练,十折交叉验证结果:决定系数R2=0.89、均方根误差RMSE=4.75μg/m3.同时对全国O3人口暴露水平进行评估.结果表明:在暴露强度上,我国人口加权O3浓度值排在前5的省依次是山东、河南、江苏、河北、上海,均值浓度为94.48μg/m3.在暴露持续时间上,非达标天数最多的5个省依次是河南、山东、河北、宁夏、北京,一年内有42%的天数处于非达标的状态.  相似文献   

19.
本文分析了2014~2015年兰州市春季沙尘天气期间颗粒污染物PM10、PM2.5及气态污染物SO2、NO2、CO和O3质量浓度的演变规律.结果表明,沙尘天气造成PM10和PM2.5浓度上升,而SO2、NO2和CO浓度表现为降低(置换型)或升高(叠加型),O3浓度受沙尘天气影响不明显.置换型的PM10和PM2.5平均质量浓度分别为1086.9和286μg/m3,SO2、NO2和CO平均质量浓度分别为16.7、41.0和1.02×103μg/m3.叠加型的PM10和PM2.5平均质量浓度分别为383.2和116.2μg/m3,SO2、NO2和CO平均质量浓度分别为24.5、49.1和1.19×103μg/m3.置换型的PM10和PM2.5平均质量浓度分别为叠加型的2.8和2.4倍,叠加型的SO2、NO2和CO平均质量浓度分别为置换型的1.47、1.2和1.17倍.置换型对应的气象条件为近地面东北方向大风、显著降温和高压,即强冷空气活动时,PM10和PM2.5浓度上升,而SO2、NO2和CO浓度显著减小,沙尘源地主要为塔克拉玛干沙漠和青藏高原北部地区,影响气流多为1500~6000m高空西北气流.叠加型则为近地面东北风向弱风,气温和气压无明显波动,即弱冷空气活动时,初期PM10和PM2.5浓度上升,同时SO2、NO2和CO浓度略下降,而后PM10和PM2.5维持高值时SO2、NO2和CO浓度亦上升,沙尘源地主要为巴丹吉林沙漠,影响气流多为1500m以下低空西北气流.  相似文献   

20.
在紧邻天津机场跑道的点位对机场区域大气常规污染物开展连续监测,应用广义加性模型(GAM),针对2017年3月1日~2018年2月28日间的NO2及O3,识别其影响因子,并确定因子贡献率.选取因子包括环境因子(SO2、NO、NO2、O3、CO、PM2.5、PM10、前一小时NO2/O3浓度),气象因子(风向、风速、温度、露点温度、修正海压)及航空活动因子(起飞、着陆).结果显示:机场区域NO2日均值为17.6~123.6μg/m3,超标天数共计38d,占比约13%;O3日均值为1.0~276.1μg/m3,超标天数占比26%,污染主要集中在夏季;环境因子是主要影响因子,累积贡献率在56%~89%;航空活动作为区域重要污染源,对大气NO2、O3存在一定影响,最高贡献率可达20%;气象因子相对贡献较低.全部GAM的Adj-R2为0.85~0.96,筛选的影响因子能够有效解释区域环境空气污染物浓度的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号