首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 296 毫秒
1.
为分析参数不确定性对地下水污染数值模拟模型输出结果的影响,以某钼矿尾矿库地下水污染问题作为研究实例,选取钼离子作为模拟因子,建立该钼矿尾矿库地下水污染数值模拟模型,对输出结果进行不确定性分析.为降低替代模型的维数,运用灵敏度分析法筛选出对模拟模型输出结果影响较大的2个参数作为模型中的随机参数.为减少反复调用数值模拟模型产生的计算负荷,分别运用克里格方法和支持向量机法建立模拟模型的替代模型,并比较二者的精度,选择精度较高的替代模型完成蒙特卡罗随机模拟.最后,对随机模拟的输出结果进行统计分析与区间估计,对地下水污染超标的风险进行评价.结果表明:置信度为80%时,井1,2,3浓度值的置信区间分别为0.71~2.29,0.28~1.02,1.55~3.25mg/L.此外,结合《地下水质量标准》以及污染物浓度分布函数曲线,井1,2,3中水质达到地下水质量标准Ⅴ类的概率分别为99.7%,97.1%,99.6%.本研究可为地下水污染防治提供更科学、全面的参考依据.  相似文献   

2.
为了分析模型参数的随机变化和边界条件的随机变化对地下水溶质运移模型输出结果的不确定性影响,采用蒙特卡洛模拟对一假想算例展开研究,并结合风险评估阐述不确定性分析结果.首先,建立研究区地下水溶质运移数值模拟模型,并综合利用局部灵敏度分析和全局灵敏度分析方法筛选出对模型输出结果影响较大的参数,连同模型的边界条件(第一类边界条件-水头值)一起作为随机变量.然后,利用优化超参数的高斯过程回归(GPR)方法建立模拟模型的替代模型,代替模拟模型完成蒙特卡洛随机模拟.最后,对随机模拟的结果进行统计分析和区间估计,并利用污染物浓度的概率分布函数对1、2、3号观测井进行地下水污染风险评价.结果表明:置信水平>80%时,1,2,3号观测井污染物浓度值的置信区间分别为34.77~35.03,57.74~58.04,100.07~100.69mg/L.此外,1,2,3号观测井为轻度污染的风险分别为6%,100%,100%;为中度污染的风险分别为0%,0%,99.6%;为重度污染的风险分别为0%,0%,0.5%,藉此为地下水污染修复防治和地下水的合理利用提供可靠参考依据.  相似文献   

3.
袁乾  卢文喜  范越  王涵  韩正 《中国环境科学》2019,39(6):2444-2451
为分析参数的不确定性对地下水污染质运移数值模拟模型输出结果的影响,以抚顺西舍场煤矸石堆及周边地区为研究对象,以硫酸根离子为模拟因子建立污染质运移的数值模拟模型,运用灵敏度分析法筛选对模拟模型影响较大的参数作为随机变量;为减少反复调用模拟模型产生的计算负荷,运用克里格方法建立污染质运移模拟模型的替代模型,利用替代模型完成蒙特卡洛随机模拟;最后,对随机模拟的输出结果进行统计分析,利用污染质浓度分布函数估算单井遭受污染的风险.结果表明,井1,井2和井3中达到地下水质量标准的Ⅲ类标准的概率分别为0.6%,97.6%和0%,藉此为地下水污染防治提供更加科学,丰富的参考依据.  相似文献   

4.
基于替代模型的地下水溶质运移不确定性分析   总被引:1,自引:0,他引:1  
为分析参数的不确定性对地下水溶质运移数值模型的影响,采用蒙特卡罗(Monte Carlo)模拟对一算例进行分析,并从风险评估的角度对不确定性分析的结果进行了阐释.为减小计算负荷,利用Sobol'法对模型参数进行了灵敏度分析,筛选出较为敏感的参数作为随机变量,建立了模拟模型的克里格(Kriging)替代模型,进而实现Monte Carlo模拟.结果表明:置信度为80%时,井1,2,3浓度值的置信区间分别为23.46~42.06,47.99~66.73,69.54~82.94mg/L;结合风险评估,计算出地下水受污染的风险为0.54,可为地下水污染物防控与修复提供科学依据.  相似文献   

5.
水文地质参数本身存在不确定性,为分析水文地质参数不确定性对地下水DNAPLs污染多相流数值模拟模型输出结果的影响,本文针对假想算例展开研究,首先建立了研究区地下水DNAPLs污染多相流数值模拟模型;然后,运用灵敏度分析法筛选对模型输出结果影响较大的参数作为随机变量;为减少反复调用多相流模拟模型产生的计算负荷,运用克里格方法建立多相流模拟模型的替代模型,利用替代模型完成蒙特卡洛随机模拟;最后,对随机模拟的结果进行统计分析并完成地下水污染风险评价.结果表明,利用污染物浓度分布函数可以估算单井遭受污染的风险;利用地下水污染风险图可以对全区地下水遭受不同程度污染的风险大小进行分区,为地下水污染防治提供更加科学、丰富的参考依据.  相似文献   

6.
考虑边界条件不确定性的地下水污染风险分析   总被引:1,自引:0,他引:1  
为分析边界条件不确定性对地下水污染质运移数值模拟模型输出结果的影响,运用Monte Carlo方法对一算例进行阐明,并从污染风险预报方面对模拟结果进行分析.为减少重复调用模拟模型产生的大量计算负荷,将边界条件(第一类边界条件-水头值)作为随机变量,建立地下水污染质运移数值模拟模型的Kriging替代模型,在保证较高精度的同时,实现了Monte Carlo模拟.结果表明:边界条件的不确定性,对地下水污染质运移数值模拟模型预报的结果有很大影响,考虑与未考虑边界条件不确定性得到的研究区污染羽分布差别较大.对地下水污染质运移数值模拟模型的Monte Carlo模拟结果进行统计与分析,可以评估研究区观测井1,2,3污染物浓度预报结果的可靠程度,并且可以预报出研究区观测井1,2,3遭受不同程度污染的风险.  相似文献   

7.
地下水污染预测可以通过地下水污染质运移数值模拟模型予以实现,为分析模型参数取值不确定性对模型输出结果的影响,本文运用蒙特卡洛方法对模型输出结果进行不确定性分析.为降低数值模拟模型复杂程度,运用灵敏度分析方法筛选对模型影响较大参数作为模型中随机变量;为减少重复调用数值模拟模型产生的计算负荷,在保证一定精度前提下,运用克里格方法建立模拟模型的替代模型完成模拟过程.结果表明:应用概率密度函数积分可以估计地下水遭受污染风险与不同置信程度下污染物浓度区间.污染羽分布图与分级污染超标风险预警图可以分别对研究区不同等级污染覆盖面积和研究区不同污染风险对应污染羽分布进行估计.基于污染质运移数值模拟不确定性分析的地下水污染超标风险预警可以更加客观地对地下水污染问题进行预测.  相似文献   

8.
采用模拟-优化方法进行地下水污染监测井网的优化设计,建立的优化模型以最大化覆盖高污染区域为目标,且综合考虑了各时段污染质的运移情况.为减小计算负荷,研究中引入Kriging方法建立模拟模型的替代模型,来代替模拟模型与优化模型进行耦合.最后通过一个假想案例评估替代模型的拟合精度和优化模型的性能.结果表明:替代模型的输出结果相对误差均小于0.5%,拟合精度较高;通过计算优化模型得到的最优布设方案污染质检出浓度和为3.37mg/L,检出率为85%,远高于随机布设方案.说明该方法能够以较小的计算量实现最大化覆盖高污染区域的目标.本次研究为监测井的布设提供了一种稳定可靠的优化方法.  相似文献   

9.
基于灵敏度分析和替代模型的地下水污染风险评价方法   总被引:1,自引:0,他引:1  
采用蒙特卡洛方法,借助随机模型进行地下水污染风险评价,模型中随机变量利用灵敏度分析的方法确定,使地下水风险评价结果更为可靠,并借助一个假想例子来说明评价过程.结果表明,模拟输出数据符合正态分布规律,对正态分布概率密度函数积分可以得到污染风险,井1、井2和井3的污染风险分别为0%、78.52%和100%;根据整个模拟区的污染风险分布图可以划分出具有不同污染风险程度的子区域,藉此能够定量评价模拟区不同子区域的污染风险程度.  相似文献   

10.
以抚顺市某煤矸石堆放场为研究区,根据研究区的实际条件建立地下水污染质运移模拟模型,预测地下水污染质未来时空变化特征.基于正演预报结果构建了假想例子,应用模拟-优化方法对地下水污染源源强及场地的渗透系数进行反演识别.为减小优化模型反复调用模拟模型所产生的计算负荷,分别采用Kriging方法和BP神经网络方法建立了模拟模型的替代模型.最后运用模拟退火法求解优化模型,得到反演识别结果.研究表明:应用Kriging方法建立的替代模型输出结果的平均相对误差为0.3%;应用BP神经网络方法建立替代模型的输出结果平均相对误差为1.5%,应用两种替代模型对污染源源强识别的相对误差均小于0.5%,对场地两个参数分区渗透系数识别的相对误差均不大于5%.综上,应用Kriging方法建立的替代模型精度高于BP神经网络方法,利用基于两种替代模型的模拟-优化方法对污染源源强和渗透系数进行同步识别精度可以满足实际需求,是有效可行的.  相似文献   

11.
为定性及定量识别地下水中氮的污染来源及迁移转化特征,本文在水化学分析的基础上结合氮氧稳定同位素技术及SIAR模型对渭河流域关中段地下水补给来源、地下水中氮污染特征进行了判断.结果表明,渭河流域关中段地下水的主要水化学类型为HCO3-Ca+Mg型,地下水由降水快速入渗补给和地表水入渗补给.地下水氮污染以硝态氮形式为主,在所采集的34个地下水水样中,硝态氮含量的变化范围为0.154~36.717mg/L,平均含量为6.17mg/L,其中硝态氮含量超过Ⅲ类地下水标准的采样点共有2个,超标率为5.9%.氮循环的主导作用为硝化作用.地下水δ15N-NO3-含量的变化范围为+6.08‰~+16.42‰,δ15O-NO3-含量的变化范围为+9.38‰~+12.514‰,硝态氮污染主要受到人类活动的影响,土壤有机氮、粪便及污废水和大气沉降是地下水硝态氮的主要贡献者,平均贡献率分别为44.65%、40.03%和15.32%.  相似文献   

12.
使用可渗透反应墙(PRB)技术修复受污染地下水,当地下水污染羽宽度和深度过大时,PRB的开挖、填料与安装成本较高.为打破PRB技术这一局限性,开发了减压集流式可渗透反应墙技术,通过集流井、输水管道和布水廊道的共同作用缩小污染羽范围并将受污染地下水输送至PRB,通过非完整井减压吸水方式捕获较深的受污染地下水.首先采用地下水井流公式计算减压集流井的关键初始参数,随后进行数值模拟优化参数并确定其它重要参数.在MODFLOW中通过改变减压集流井的井径、井数量、井间距及井与PRB的距离等参数,探究不同参数变化对减压集流效果的影响规律.模拟结果表明在合理的减压集流参数设置下,该设施可有效调控PRB上游的地下水流场,缩小污染羽的范围,在设定条件下受污染地下水断面减小了约50%.该技术显著降低了PRB的规模,拓宽了PRB的应用范围,使其可以处理污染羽范围较大、污染深度大的地下水.  相似文献   

13.
Fe0-PRB修复地下水硝酸盐污染数值模拟   总被引:1,自引:0,他引:1  
基于地下水对流-弥散作用,采用数值分析方法,构建了GMS地下水渗流和硝酸盐污染物迁移三维耦合模型.在污染物迁移过程中,不考虑吸附降解和考虑吸附降解两种工况下,分析了污染物在地下水中的迁移特征.结果表明:地下水和土壤存在天然净化污染物的能力,但不显著,必须采取有效措施控制污染.以零价铁作为PRB墙体介质,并用GMS软件模拟Fe0-PRB修复地下水中硝酸盐的效果.PRB存在时能显著控制污染物的污染范围并降低污染物浓度.PRB厚度为4m时,污染物经过550d开始透过PRB墙,PRB运行10a后,1、2、3号观测井的浓度分别1.712,0.011,0.018mg/L,PRB下游污染羽拖尾明显;PRB厚度为6m时,污染物经过850d开始透过PRB墙,PRB运行10a后,1、2、3号观测井的浓度分别0.52,0.004,0.005mg/L,与4mPRB相比浓度分别降低69.6%、63.6%和72.2%,PRB下游污染羽拖尾仍存在但不明显.污染物迁移数值模拟是评价PRB修复污染地下水效果及确定PRB参数的重要手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号