共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
为探究硫自养反硝化过程中含硫副产物的产生规律,建立了上流式硫自养固定床生物反应器,考察HRT(水力停留时间)对水中NO3--N去除的影响,运用零级和1/2级反应动力学模型对NO3--N还原过程进行拟合,通过测定与理论计算分析含硫副产物的产生趋势及规律,利用高通量测序技术(high-throughput sequencing)测定微生物群落结构空间分布特征.结果表明:①当进水NO3--N浓度为(30.45±0.38)mg/L,HRT为4和1 h时,NO3--N去除率达到98%以上.硫自养反硝化过程符合1/2级反应动力学模型,1/2K1/2V(1/2级反应动力学速率常数)为5.69 mg1/2/(L1/2·h).②出水SO42-的产生量接近理论值,S2-在反应器中部出现微量的积累,在出水口处浓度进一步降低(< 0.5 mg/L).③HRT的缩短改变了反应器内部微生物群落α多样性的变化规律;Proteobacteria成为了最主要的优势菌群,各阶段所占比例均大于59%,Sulfurimonas为最常见的反硝化菌,在HRT为1 h时,反应器中部其丰度达到36%,成为反应器中的优势菌属;Desulfurella为SRB(硫酸盐还原菌),其丰度的增加与反应器内部S2-的积累一致.研究显示,硫自养反硝化过程中产生的SO42-与理论值接近,S2-产生量沿反应器高度方向呈现先增加后降低的趋势,微生物群落结构分布情况与反应器高度有关. 相似文献
3.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为Thiobacillus、Sulfurimonas和Thermomonas属,其相对丰度分别为14.5%、7.6%和6.0%. 相似文献
4.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为Thiobacillus、Sulfurimonas和Thermomonas属,其相对丰度分别为14.5%、7.6%和6.0%. 相似文献
5.
6.
硫/石灰石自养反硝化工艺的研究 总被引:6,自引:0,他引:6
本文对上流式硫/石灰石生物自养反硝化法的各种工艺参数及影响因素进行了试验研究。研究结果表明:滤柱原本中需投加少量的磷酸盐.当温度为22℃时,滤柱的临界硝酸盐体积负荷为5559NO3--N/m3·d。12℃时,临界负荷为380gNG3--N/m3·d.滤柱若在高于临界负荷下运行,则不可能达到完全反硝化出水中存在亚硝酸盐.若在低于临界负荷下运行,反硝化效率为100%,亚硝酸盐在滤柱底部产生,而在滤柱上部还原为氮气,出水中不存在亚硝酸盐. 相似文献
7.
《环境工程》2015,(Z1)
为研究基于硫自养反硝化和厌氧氨氧化耦合工艺中微生物群落结构和多样性特征,从稳定运行的HABR厌氧折流板反应器中采集生物膜样品,利用PCR-DGGE技术分别对反应器中4个格室进行群落结构解析。结果表明,微生物群落变化与水质环境中的有机物、氮和硫的浓度有关,微生物群落结构在不同的格室中变化较大,4个格室中的细菌的Shannon-Wiener指数(H)由左至右依次减小,相邻格室的相似性较高。经过克隆测序分析,HABR反应器内的微生物多为硫自养反硝化菌和厌氧氨氧化菌,并且出现了Sulfurimonas菌种,该类菌种是同步脱硫反硝化作用的主要功能菌,它们对污水中硫及氮的去除发挥了重要的作用。 相似文献
8.
硫自养反硝化因无需外加碳源、运行过程无CO2直接碳排放,且硫或硫化物价格低廉而开始进入大众眼帘.硫自养反硝化概念始于20世纪70年代,但国际上对其研究与应用一直默默无闻,反而是近年来在我国方兴未艾,这一反差现象耐人寻味.通过对硫循环及硫资源概括总结发现,全球硫储量虽多,但硫资源开采主要来源于石油、天然气冶炼过程中对硫的回收,获得并不具有持久性.对硫自养反硝化过程原理、存在问题、直接碳排放等分析显示,自养反硝化速率较异养反硝化低61.5%~75.6%,反应过程会产生大量SO42-.此外,还存在硫填料滤床穿透逐渐降低处理负荷等问题.碳排放分析揭示,低pH(<6.5)会抑制反应进程,可能导致反硝化止步于氧化亚氮(N2O)而产生相当释放量.相反,除外加碳源导致CO2直接排放问题外,异养反硝化在同步脱氮除磷方面优势明显.况且,碳源缺乏问题存在多种解决方案,完全可以通过不外加碳源或选择废弃生源性碳源来解决碳排放问题.因此,在选择正确脱氮除磷技术路径时需要在深入了解反应机理的基础上,全... 相似文献
9.
室温下(19~24℃),采用硫自养反硝化生物膜反应器和厌氧污泥反应器,接种厌氧活性污泥,研究了反应器类型和单质硫尺寸对硫自养反硝化反应器启动的影响.结果表明,生物膜反应器经过65 d运行后获得稳定的脱氮效能,在进水NO~-_3-N浓度为150 mg·L~(-1),HRT为3.3 h,NO~-_3-N去除率为91%,TN去除率为77%,TN去除速率为0.67~0.83 kg·(m3·d)~(-1).对于厌氧污泥反应器,随着进水NO~-_3-N负荷的提高,污泥产气量的增加导致了污泥上浮.在进水NO~-_3-N浓度为185 mg·L~(-1),HRT为3.3 h的条件下,获得最大去除速率1.1 kg·(m3·d)~(-1),但是出水NO~-_3-N浓度的增加导致出水水质恶化,且污泥上浮严重影响了反应器的稳定运行.分别采用0.8 mm、3.0 mm的单质硫颗粒作为反应器启动的电子供体,于批试反应器中进行试验.试验结果表明,采用0.8 mm的单质硫颗粒能够获得较高的NO~-_3-N、TN去除率,出水NO~-_2-N浓度也明显低于采用3.0 mm的单质硫颗粒作为电子供体的反应器. 相似文献
10.
11.
采用包埋固定化技术制备了包埋硫铁生物填料(ESI Filler),基于升流式自养反硝化反应器开展动态实验研究,通过改变水力停留时间(HRT)、pH值、溶解氧(DO)等运行条件,探究ESI Filler反应器的脱氮效果及微生物群落结构组成。结果表明,当进水硝酸盐氮(NO3--N)浓度为30mg/L,HRT为10h时,NO3--N去除率不断上升至99.80%。当HRT缩短为2.5h时,NO3--N去除率降至61.35%。ESI Filler反应器对pH值和DO的改变具有较高的稳定性,NO3--N平去除率可维持在82.5%以上。但对低温的耐受性较差,当温度从35℃降低至15℃时,NO3--N平均去除率由90.12%降低至68.80%。运行164d后,球体未出现破裂散落的现象,表现出较长的使用寿命。通过扫描电镜发现,填料表面疏松多孔,附着大量杆状细菌,已成为微生物的良好载体。高通量测序结果表明,包埋颗粒中优势菌属为典型的自养反硝化功能菌Thiobacillus,丰度为80.79%。 相似文献
12.
为探究硫自养反硝化所需的最低磷浓度,对硫自养反硝化系统进行磷饥饿处理,给予不同磷浓度的进水,考察磷浓度对硫自养反硝化效果和微生物群落结构的影响。结果表明:随着磷饥饿期的延长,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率由饥饿前的98.1%~99.6%逐步降至24.8%~49.6%,且出水中随之出现亚硝酸盐的积累。补充磷后,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率随进水磷浓度的增加显著提升,且进水磷浓度越高,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率能越快恢复至饥饿前水平(98%以上),出水中的亚硝酸盐氮浓度也越快降至饥饿前水平(不足0.05 mg/L)。当进水中磷浓度不低于0.200 mg/L时,硫自养反硝化效率不受磷浓度限制。磷浓度影响硫自养反硝化系统的微生物多样性,磷恢复处理组的物种多样性和丰度均显著高于磷饥饿处理组。在磷恢复处理组中,硫自养反硝化相关的功能菌属是优势菌属,相对丰度占45.78%,而在磷饥饿处理组中,该功能菌属相对丰度仅占4.67%,磷浓度极大地影响了硫自养反硝化系统中的硫自养反硝化相关功能菌的相对丰度。 相似文献
13.
研究了一种电化学氢自养与硫自养集成去除饮用水中硝酸盐的方法,将2种自养反硝化集成,既可减少以硫作为电子供体产生的SO4^2-,也可以使硫自养反硝化产生的H^ 作为电化学产氢的前驱物。同时,在硫自养段可不添加调pH的CaCO3,避免了出水的硬度升高。试验结果表明,在反应器的水力停留时间(HRT)为1.9-5h,最小电流相应为3-16mA时,NO3^--N去除率达90%以上,出水中NO3^--N和SO4^2-浓度分别低于3.0mg/L和170mg/L,NO2^--N未检出,硫段和电氢段出水pH值均维持在中性附近。 相似文献
14.
以实验室成功启动的硫自养短程反硝化污泥作为接种污泥,通过批次试验分别探究HRT、pH值和温度对反应过程的影响.研究表明,控制条件参数HRT为5h、pH值为7.5、温度为30℃时,亚硝酸盐和单质硫积累效果最佳,分别达到92.53%和59.36%.对以上最佳参数条件下运行的污泥取样进行微生物高通量分析,Proteobacteria菌门丰度达到91.44%,是自养反硝化的主要菌门,Thiobacillus菌属丰度为66.04%,是实现硫自养短程反硝化过程中稳定单质硫和亚硝酸盐的主要贡献者.对反应出水中的生物单质硫进行絮凝沉淀回收,响应面优化结果表明,絮凝剂PAC投加量为7.73mL/L、pH值为4.53、搅拌速度为220r/min为生物单质硫絮凝的最佳匹配参数.平行试验验证得平均单质硫絮凝率(SFE)为88.1%. 相似文献
15.
为探究生物膜脱氮滤池脱氮效能差异的微生物因素,设置组1(包括接种污泥、稳定期滤料、反冲洗后滤料微生物变化)和组2(包括反冲洗前滤料、反冲洗后不同时间段滤料微生物变化)两组实验,通过高通量测序,研究不同阶段微生物群落结构、丰度和多样性的分布情况.结果表明:接种污泥与滤料表面微生物群落结构和多样性在门水平下差异不大,但在属水平下差异显著,而相对丰度在两种分类水平下始终差异显著.反冲洗后0~4 h滤料表面微生物的OTU数目、Shannon指数、Chao1指数变化,在滤池30 cm处先升后降,而在60 cm处曲折上升,也即二者的微生物丰度和多样性变化趋势.反冲洗前后Proteobacteria始终占主导地位,相对丰度为79%~90%,Proteobacteria中Betaproteobacteria占主导优势,反冲洗后Betaproteobacteria数量相对减少,后逐渐恢复.总反硝化优势菌属相对丰度在反冲洗1 h后30 cm处由78%左右下降到70%左右,60 cm处由68%左右下降到64%左右,此时出水总氮达到最高值7.7 mg·L~(-1),之后总反硝化优势菌属及出水TN浓度逐渐恢复至正常水平,这种消长变化表明滤池脱氮效果与总反硝化优势菌属相对丰度密切相关,滤池运行状态的改变使得反硝化优势菌属的群落结构差异显著. 相似文献
16.
17.
从连续运行的UASB反应器厌氧污泥中分离得到一株脱氮硫杆菌T.d.a,采用分批摇床试验,采用脱氮硫杆菌标准培养基,以硫代硫酸钠为硫源,研究pH值、温度、氮源(NO3--N,NH4+-N)、能源(S2O32-)、碳源(HCO3-)、葡萄糖、无机盐(P, Mg2+, Fe2+)对该菌株自养反硝化的影响.结果表明,在pH6.5~8.0,温度20~35℃的范围内,T.d.a对NO3--N均有较高的去除速率,其最佳反硝化pH值为7.04,温度为27.40℃.T.d.a对554mg/L的NO3--N对T.d.a有一定的抑制作用;T.d.a反硝化所需NH4+-N的限制浓度为2.62mg/L;S2O32-浓度对T.d.a反硝化的影响主要取决于其与NO3-的比例关系,在NO3-过量的情况下,NO3--N去除率与加入的S2O32-量成近似的正比关系.T.d.a以HCO3-作为无机碳源时其限制浓度为29.05mg/L;0~2000mg/L的葡萄糖对NO3--N去除率没有明显影响.P和Mg2+的限制浓度分别为0.034,0.059mg/L,Fe2+的限制浓度低于0.058mg/L. 相似文献