共查询到17条相似文献,搜索用时 140 毫秒
1.
余红 《环境工程技术学报》2014,4(4):321-325
发展可再生能源发电是《大气污染防治行动计划》的一项重要措施,有助于推进PM10和PM2.5减排,改善空气质量。从生命周期来看,各类可再生能源发电的PM10和PM2.5排放系数均低于燃煤火电,各类可再生能源发电单位发电量的PM10和PM2.5减排因子由高到低依次为水电>并网风电>太阳能发电>生物质发电。通过生命周期评价计算可知,以可再生能源发电替代燃煤发电,PM10和PM2.5在2012年已经实现了较好的减排效果,减排量分别为37.87×104和18.94×104 t/a;未来仍将具有较大的减排潜力,2015年PM10和PM2.5可分别减排44.21×104和22.10×104 t/a,2020年PM10和PM2.5可分别减排65.41×104和32.71×104 t/a。 相似文献
2.
北京市区春夏PM2.5和PM10浓度变化特征研究 总被引:2,自引:0,他引:2
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。 相似文献
3.
基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制 总被引:1,自引:3,他引:1
目前我国尚无固定源PM2.5采样标准方法,现有商业化的固定源PM2.5采样器在使用中存在明显不足,因此本研究开发了一种固定源PM10/PM2.5双级虚拟撞击采样器.经实验室标定,该采样器切割效率曲线优于国际标准ISO 7708:1995对采样器的规定,采样器横截面直径为74 mm,满足我国固定源采样口尺寸要求.采样器既可以安装滤膜,也可以安装滤筒,适用于不同浓度的烟尘采样.虚拟撞击器的切割点与次流所占比值呈负相关,比值减小时,切割点增大.为降低颗粒物损失,虚拟撞击器喷嘴距收口的距离至少应为喷嘴直径的1.5~2倍. 相似文献
4.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征. 相似文献
5.
6.
为了探究珠江三角洲城市大气PM2.5和O3的协同污染特征,在深圳市大学城开展了秋季光化学反应活跃季大气污染加强观测.发现O3日最大8h平均值(O3_8h)和PM2.5在日间具有较强的正相关关系,且O3_8h与典型挥发性有机物(VOCs)甲醛的相关性显著高于NO2.利用气溶胶质谱仪在线测量了亚微米气溶胶化学组成,并利用正交矩阵因子模型(PMF)对其中有机气溶胶进行来源解析,解析出5类因子,其中二次有机气溶胶(SOA)占总有机物浓度的50%.通过对污染物之间的相关性分析发现,O3_8h和SOA具有良好的相关性,但与硝酸盐(NO3-)未表现出相关性,说明VOCs在深圳城区大气PM2.5和O3耦合生成过程中的作用比NOx明显,VOCs减排是深圳市协同控制PM2.5和O3污染的关键. 相似文献
7.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视. 相似文献
8.
为了探究保定市郊区2018年冬季PM2.5氧化潜势的特征及其影响来源,利用二硫苏糖醇(DTT)测定法对PM2.5中活性氧进行测定,采用皮尔逊相关分析PM2.5中各化学成分与氧化潜势的关系,并且利用PMF对DTTv进行污染源解析.结果表明,冬季保定市ρ(PM2.5)平均值为(140.96±70.67)μg·m-3,高于同时期北京PM2.5浓度.氧化潜势的DTTv和DTTm值均表现出白天高于夜间的情况[DTTv白天为(2.37±0.76) nmol·(min·m3)-1,夜间为(2.14±1.17) nmol·(min·m3)-1; DTTm白天为(0.96±0.60) pmol·(min·μg)-1,夜间为(0.76±0.41) pmol·(... 相似文献
9.
10.
自2013年《大气污染防治行动计划》实施后,南京市大气污染有所改善,但仍面临着细颗粒物(PM2.5)和臭氧(O3)污染问题.为探究污染物浓度对其前体物减排的响应,获得有效的减排策略,常利用大气化学模式进行多组基于排放扰动的敏感性试验,而这需要消耗大量计算时间和计算资源.应用随机森林算法对2015年大气化学传输模式(GEOS-Chem)模拟结果进行机器学习,高效地预测了南京2019年PM2.5浓度日均值和日最大8 h臭氧(MDA8 O3)浓度对不同人为源排放控制情景的响应.随机森林结果表明2019年中国人为排放每减少10%,南京ρ(PM2.5)季节平均值下降2~4μg·m-3.当2019年中国人为源减排比例高于20%时,南京ρ(PM2.5)年均值将低于国家二级限值(35μg·m-3).若仅对中国地区O3前体物氮氧化物(NOx)和挥发性有机污染物(VOCs)同比例减排,反而... 相似文献
11.
采集太原市冬季大气细颗粒物(PM2.5),选取4周、4月、10月龄C57BL/6雌性小鼠,采用咽后壁滴注的方法用3mg/kg(体重)PM2.5暴露4周.此外,分别采集太原市、北京市、杭州市和广州市4个城市的冬季PM2.5,将10月龄小鼠暴露其中.采用荧光定量PCR技术检测心脏组织中细胞色素C氧化酶亚基I(co1)、IV(co4)和ATP合酶(ATP6)以及核转录因子pgc-1α、nrf1和tfam的mRNA转录水平.结果发现,太原市PM2.5暴露后,10月龄小鼠心脏组织中co1、co4和ATP6以及核转录因子pgc-1α、nrf1和tfam的mRNA水平与对照组相比均显著升高.但4周和4月龄小鼠中上述基因表达则未见明显差异.10月龄小鼠暴露于不同城市PM2.5后,杭州PM2.5暴露可引起小鼠心脏组织中co1、co4、ATP6、pgc-1α、tfam的mRNA表达上升.北京PM2.5暴露可引起小鼠心脏组织中co1、ATP6和tfam的mRNA表达显著上升;广州PM2.5暴露则未见上述任何基因表达的显著改变.研究表明,太原市PM2.5对易感小鼠心脏线粒体氧化磷酸化的影响最大,其次是杭州市和北京市,而广州市的影响最小. 相似文献
12.
为分析深圳市大气细颗粒物(PM2.5)浓度长期持续下降的原因,进而明确PM2.5下一步减排潜力和精细化管理方向,本研究基于2019年在深圳市西乡点位采集的PM2.5样品,分析了西乡PM2.5的化学组成及季节分布特征.结果表明,2019年西乡点位PM2.5年均浓度为29.4μg/m3,总体上呈现夏低冬高的季节特征,有机物(OM)和硫酸根(SO42-)仍是主要的组分,分别占总质量的42.3%和17.6%.对2009、2014、2019年典型月份PM2.5的组分进行对比,PM2.5全年质量浓度从42.3μg/m3(2009年)下降至24.6μg/m3.(2019年),OM、SO42-、硝酸根(NO3-)、铵根(NH4+)和元素碳(EC)等都有明显的下降趋势.矿物质元素(Al、Ca)是地面扬尘和建筑尘的标识组分,近年来Al、Ca浓度的增加趋势表明宝安区西乡扬尘的影响在逐渐扩大.2009、2014、2019年OC/EC的值逐渐扩大,说明了一次燃烧源排放的影响逐渐减小,但二次有机物(SOC)的贡献逐渐凸显.通过分析2004、2009、2014、2019年夏、冬季PM2.5中6种主要组分变化趋势,表明6种主要组分夏冬两季皆有下降趋势,但由于气象因素导致冬季污染物受到区域传输的影响较大,夏季各组分浓度的下降幅度普遍高于冬季.总体来说深圳市PM2.5浓度持续下降的原因是深圳市对机动车、工业VOC (挥发性有机物)、远洋船舶以及一次燃烧源的管控和减排. 相似文献
13.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键. 相似文献
14.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键. 相似文献
15.
鄂尔多斯市秋季大气PM2.5、PM10颗粒物中正构烷烃的组成分布与来源特征 总被引:2,自引:0,他引:2
利用气相色谱-质谱技术分析了秋季鄂尔多斯市居民区、工业区和清洁区5个采样点大气PM2,、PM10颗粒物中正构烷烃组分,运用Cmax、CPl、Cn(wax)分子地球化学参数对污染源进行了初步示踪研究,并对污染程度进行了判断.结果表明,鄂尔多斯市秋季大气PM2.5、PM10颗粒物上正构烷烃来源相对比较复杂,各功能区均不同程度的受到人为来源正构烷烃污染的影响.总体来说,工业区和居民区人为来源正构烷烃污染较重,这两个功能区污染状况基本相当,而清洁区受人为来源正构烷烃污染相对较小.在鄂尔多斯地区,气候因素尤其是风向因素对大气颗粒物上正构烷烃污染水平的影响比较大.通过与我国其它大中型城市进行对比发现,我国大部分城市市区大气PM2.5、PM10颗粒物中正构烷烃主要来自于人为污染排放. 相似文献
16.
为探索西北地区颗粒物(PM)短期暴露对人群血压(BP)水平的影响,基于金昌队列研究平台,收集甘肃省金昌市2011~2017年颗粒物污染数据及队列人群血压测量数据,在调整相关混杂因素基础上,采用线性混合效应模型分析PM2.5和PM10短期暴露对收缩压(SBP)、舒张压(DBP)、平均动脉压(MAP)、脉压(PP)和Mid-BP (SBP和DBP的均值)的影响.结果显示,随着PM2.5浓度的增加,人群SBP,MAP,PP和Mid-BP均呈上升趋势,该效应值分别在累积滞后05,03,07和05d最大.随着PM10浓度的增加,5种BP指标也均呈上升趋势,效应最大值均出现在累积滞后07d.PM2.5和PM10对BP产生的影响分别在吸烟和男性人群中更为显著.此外,沙尘天气和气态污染物(SO2和NO2)对PM-BP效应存在一定的修饰作用.因此,在该队列人群中,PM2.5和PM10短期暴露对人群血压具有一定影响,吸烟者和男性人群可能是颗粒物影响血压效应的易感人群. 相似文献
17.
基于2015~2020年京津冀地区生态环境监测数据和多源气象数据,分析了北京地区0~3km中低空垂直风切变在不同PM2.5等级下的演变特征。结果表明,风速日变化特征随着PM2.5浓度升高而逐渐减弱,PM2.56级污染时近地面风速日变化基本消失,甚至反向变化;白天边界层风速增大时段对应10m/(s·km)以下的风切变,20:00后增大至12~14m/(s·km),该现象随着PM2.5污染加重变得更为显著,白天时段近地层垂直风切变较小值(<6m/(s·km))维持,可能是污染严重的信号之一;基于旋转经验正交函数分解法(REOF),将污染日下中低空垂直风切变分为无扰动型和压缩型,压缩型低压强度略强于无扰动型,无扰动型的PM2.5浓度均值、峰值较压缩型更高,逆温强于压缩型,另外,无扰动型PM2.5浓度增长期和边界层高度(PBLH)反向变化,压缩型PM2.5浓度增长期和PBLH同向变化。 相似文献