首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
鉴于我国本地化源谱(源成分谱)数量不足的现状,采用稀释通道系统对燃煤源和工业过程源进行采样,建立了4类燃煤锅炉(链条炉、流化床、往复炉和煤粉炉)和6类工业过程源(炼铁、铝焙烧、铝煅烧、砖瓦炉、水泥窑头和窑尾)的PM2.5成分谱,并对源谱特征进行研究.结果表明:① 不同源谱组分特征差异明显.水泥窑炉排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)较高,分别为8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%;燃煤锅炉中Al(4.50%~8.67%,质量分数,余同)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)组分贡献较大;炼铁和铝冶炼工艺源谱中主导化学组分分别为Fe(8.57%~9.88%)和Al(11.81%~16.58%);砖瓦炉颗粒物源谱中主要组分为SO42-、NH4+、Si等.② 不同污染源PM2.5成分谱的分歧系数结果显示,流化床和煤粉炉、水泥窑头和窑尾源谱较为相似,其分歧系数分别为0.26和0.28,其余源谱间均存在一定差异.进一步计算组分差异权重(R/U)发现,往复炉源谱中组分Zn、Sn与其他3类锅炉有明显不同.流化床/煤粉炉源谱中的Si、Ni,窑头/窑尾源谱中的K、Mn、OC组分差异显著,可以作为区分相似源谱的标识组分.与其他研究建立的源谱相比,燃煤源谱中w(EC)和w(SO42-)偏高.钢铁源谱中w(EC)和w(NH4+)较其他地区偏高,w(Pb)偏低;工业过程源谱中,w(Cl-)较SPECIATE相关源谱偏低,而w(Ⅴ)和w(Cr)偏高.鉴于颗粒物源谱受到不同燃料种类、燃烧方式和烟气控制设施等影响而存在差异,源谱的准确性和代表性还需进一步测试和验证.   相似文献   

2.
采用再悬浮采样方法获得武汉4类开放源(土壤风沙尘、施工扬尘、道路扬尘和城市扬尘)细颗粒物(PM2.5)样品,分析了无机元素、水溶性离子和碳质组分含量,构建了武汉市开放源PM2.5成分谱。结果表明:开放源PM2.5的组成以地壳类元素为主,地壳类元素占化学成分总量的62.69%~80.14%,自然背景特征明显。土壤风沙尘PM2.5中Si和Al的含量较高,施工扬尘PM2.5中Ca和有机碳(OC)的含量显著高于其他3类尘源,道路扬尘PM2.5中的主要组分为Ca、Si和OC,城市扬尘PM2.5中的主要组分为Si和Ca。Ca、Cu、Zn分别在施工扬尘、道路扬尘和城市扬尘中强烈富集,富集因子(EF)均>20,表明受人为源的影响大。源谱中的碳组分以OC为主,OC/EC值均>2,表明开放源对二次气溶胶形成有一定影响。4类源谱相互之间的分歧系数为0.29~0.47,相关系数为0.19~0.97,其中土壤风沙尘与其他3类扬尘之间的相似度不高;城市扬尘、施工扬尘、道路扬尘互相之间存在较高的相似度,具有很强的共线性。构建武汉开放源PM2.5精细化成分谱,可为武汉开展PM2.5源解析及开放源污染防治提供参考。  相似文献   

3.
为了探究珠江三角洲城市大气PM2.5和O3的协同污染特征,在深圳市大学城开展了秋季光化学反应活跃季大气污染加强观测.发现O3日最大8h平均值(O3_8h)和PM2.5在日间具有较强的正相关关系,且O3_8h与典型挥发性有机物(VOCs)甲醛的相关性显著高于NO2.利用气溶胶质谱仪在线测量了亚微米气溶胶化学组成,并利用正交矩阵因子模型(PMF)对其中有机气溶胶进行来源解析,解析出5类因子,其中二次有机气溶胶(SOA)占总有机物浓度的50%.通过对污染物之间的相关性分析发现,O3_8h和SOA具有良好的相关性,但与硝酸盐(NO3-)未表现出相关性,说明VOCs在深圳城区大气PM2.5和O3耦合生成过程中的作用比NOx明显,VOCs减排是深圳市协同控制PM2.5和O3污染的关键.  相似文献   

4.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

5.
上海PM2.5工业源谱的建立   总被引:3,自引:0,他引:3  
总结统计了我国目前的PM2.5源成分谱,指出我国本土源谱缺乏的现状.我国主要的污染源类如燃煤源、机动车源、道路尘、生物质燃烧源等,在源解析工作中均有借鉴外来源谱的情况.对上海典型工业污染源进行PM2.5源谱测定.研究发现,混合燃料电厂和燃煤电厂主要化学组分相似,但是Ca、Al、Fe在混合燃料电厂排放中贡献更大,Ca占(8.0±4.7)%,而燃煤电厂排放颗粒物中SO42-的贡献可达(23.3%±3.7%).烧结厂和电炉厂的源谱差距较大,烧结厂中SO42- (22.8%±10.0%)、Cl- (20.0%±4.5%)、K (17.2%±8.5%)、OC(13.0%±11.5%)、Ca(12.7%±4.2%)等物种贡献较大,而电炉厂中Fe(38.2% ±0.6%)、Zn(10.4% ±1.2%)等物种含量丰富.不同源类化学组分的显著差异与其工艺过程紧密相关.  相似文献   

6.
餐饮源油烟中PM2.5的化学组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
集中分析了餐饮无组织排放源(街边小吃、火锅店、露天烧烤)及有组织排放源(10家大中型餐馆)油烟PM2.5中的TC(总碳)、元素组分、离子组分和16种PAHs,得到了各类餐饮源油烟PM2.5的化学组成特征,建立了餐饮源油烟化学成分谱. 结果表明:各餐饮源油烟的ρ(PM2.5)是大气背景值的3~42倍,其中露天烧烤油烟的ρ(PM2.5)最高,达5 659.8 μg/m3. 不同餐饮源油烟的PM2.5中各化学组分均为w(TC)(38.1%~75.8%)>w(元素组分)(4.5%~27.0%)>w(离子组分)(2.7%~22.6%),并且ρ(PM2.5)与w(TC)呈显著正相关(R=0.84). 菲(PHE)、芘(PYR)、荧蒽(FLT)的质量分数在各类餐饮源油烟的PAHs中均普遍较高,分别为13.8%~21.6%、9.2%~26.5%、6.9%~22.0%.大中型餐馆油烟的PAHs中苯并苝(BPE)的质量分数最高(27.5%),而在其他餐饮源中均小于6.7%;(CHR)的质量分数最低(3.3%),而在其他餐饮源中均大于5.3%. 露天烧烤油烟的PAHs中芘、荧蒽的质量分数分别是其他餐饮源的2.7和2.3倍以上;萘(NAP)的质量分数(0.3%)较小,但在其他餐饮源中均大于11.4%,可以作为特定餐饮源油烟的特征物种.   相似文献   

7.
林旭  严仁嫦  金嘉佳  许凯儿 《环境科学》2022,43(4):1799-1807
2019年3月1日~2019年5月31日期间采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了VOCs体积分数的组成特征、 PM2.5和O3协同控制的优控VOCs物种和VOCs特征污染物比值.结果表明,烷烃是VOCs体积分数中最重要的组分,贡献了62.40%. C2~C6的烷烃、苯系物、乙烯和乙炔是VOCs关键物种.烯烃和芳香烃是OFP的主要贡献组分,贡献率分别为41.35%和37.50%.芳香烃是SOA的主要贡献者,贡献率超过90%.低碳的烷烃、低碳烯烃和苯系物是OFP的关键贡献物种,控制好甲苯、间/对-二甲苯和邻-二甲苯这3种苯系物,是O3和PM2.5协同控制的关键.采样点大气中VOCs除了受机动车尾气的影响外,溶剂使用等工业排放的影响也较为显著.  相似文献   

8.
通过对2013—2020年邯郸市的大气污染物浓度及气象参数进行统计分析,探究了大气污染物的浓度变化特征,运用轨迹聚类分析和潜在源贡献因子法(PSCF)研究了邯郸市复合污染日PM2.5和O3的传输路径及潜在源区.结果表明:邯郸市PM2.5-O3复合污染出现在3—10月,与单O3污染相比,PM2.5-O3复合污染时的O3峰值浓度和平均浓度较高,当温度为19.1~25.7℃,湿度为32%~63%,风速较低时,最有利于PM2.5-O3复合污染发生;单O3污染和复合污染期间的O3主要来自邯郸周围的短距离传输,单PM2.5污染主要来自西北气流的长距离运输和邯郸周围的短距离传输,而复合污染日期间的PM2.5主要来自西北气流的长距离运输;相较于单O3污染,2013、2014、2...  相似文献   

9.
以海口市为研究区域,收集了新冠疫情期间(2020年1—4月)环境空气中6项常规污染物、PM2.5水溶性离子和VOCs在线观测数据,结合同期气象参数,分析了特殊排放情境下低浓度地区PM2.5组分、臭氧及其前体物的变化特征.结果表明:(1)2020年疫情期间,海口市空气质量改善情况较好,6项污染物浓度均不同程度地降低,改善率介于9.5%~27.6%之间;(2)海口市PM2.5水溶性离子中,硝酸根离子和铵根离子的下降幅度最大,分别下降了38.9%和34.8%,其余离子小幅降低;(3)疫情期间,工业企业生产和交通活动的降低明显有助于乙烷、丙烷、正丁烷和异丁烷的体积分数及贡献率的降低,而对芳香烃的降低效果不如内地明显;(4)虽然管控减排对体积分数较大的低碳烷烃改善较明显,但体积分数较小的烯烃尤其是乙烯的臭氧生成潜势(Ozone formation potentials,OFP)贡献率反而出现上升,是未来研究区域内控制臭氧的关键;(5)管控期间O3浓度日变化明显减弱,与NO2和主要VOCs...  相似文献   

10.
鉴于烟台市本地化源成分谱研究缺乏的现状,以及颗粒物精细化来源解析及环境管理的需求,采用NK-ZXF颗粒物再悬浮采样器,对6家烟台市典型工业下载灰源样品进行再悬浮采样,构建6类〔燃煤电厂、供热锅炉、生物质锅炉、钢铁(烧结)行业、玻璃行业和垃圾处理行业〕PM2.5源成分谱,并对PM2.5源成分谱特征及其排放颗粒物携带重金属特征进行评估.结果表明:①燃煤电厂PM2.5源成分谱的标识组分包括Si、Cl-和SO42-,其质量分数分别为15.2%、9.3%和7.8%;与燃煤电厂相比,供热锅炉排放的PM2.5中w(OC)偏高、w(SO42-)偏低;生物质锅炉排放的主要组分有K、Cl-和OC等,其质量分数分别为7.4%、13.3%和8.6%;钢铁(烧结)行业PM2.5源成分谱中w(Ca)、w(Fe)和w(Cl-)较高;SO42-和Ca为玻璃行业PM2.5源成分谱的主要组分,其质量分数分别为20.6%、8.2%;垃圾处理行业重金属质量分数最高,其主要组分为Cl-和SO42-.②CD(coefficient of divergence,分歧系数)计算结果表明,各源成分谱有一定相异性(CD范围为0.53~0.70),其中生物质锅炉与垃圾处理行业PM2.5源成分谱差异(CD为0.70)最大.③各典型工业排放PM2.5所携带重金属特征显示,垃圾处理行业排放PM2.5中的重金属质量分数(2.3%)最高,燃煤电厂、供热锅炉、生物质锅炉和玻璃行业排放的重金属中Cr、Ni和Cu相对质量分数较高,钢铁行业和垃圾处理行业排放的重金属中Pb相对质量分数较高.研究显示,所构建的烟台市各典型工业排放PM2.5源成分谱特征鲜明,能够反映各行业PM2.5排放特征.   相似文献   

11.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

12.
宁波市环境空气中PM10和PM2.5来源解析   总被引:17,自引:4,他引:17  
2010年在宁波3个环境受体点采集不同季节的PM10和PM2.5样品,同时采集颗粒物源类样品,分析它们的质量浓度及多种无机元素、水溶性离子和碳等组分的含量.采用OC/EC最小比值法确定了SOC(二次有机碳)对PM10和PM2.5的贡献,据此重新构建了受体化学成分谱.使用化学质量平衡模型对宁波市区的PM10和PM2.5来源进行了解析.结果表明:城市扬尘、煤烟尘、二次硫酸盐和机动车尾气尘是环境空气中PM10的主要来源,其分担率分别为23.0%、15.9%、13.3%和12.3%;对PM2.5有重要贡献的源类是城市扬尘、煤烟尘、二次硫酸盐、机动车尾气尘、二次硝酸盐和SOC,其分担率分别为19.9%、14.4%、16.9%、15.2%、9.78%和8.85%.   相似文献   

13.
以北京市餐饮企业分布密度最大的西城区为案例区,通过对研究区域内餐饮企业进行实地污染物检测及排放活动水平调查,计算得到基于就餐人数、就餐时间、烹饪油用量和灶头数4种核算基准的餐饮业VOCs和PM2.5排放因子,并利用排放因子法分别估算该区域在餐饮废气净化设备升级改造前后餐饮企业VOCs和PM2.5年排放量.结果表明:本研究区域餐饮业废气净化设备升级改造前VOCs排放量范围为319.03~506.38t/a,改造后为92.14~109.89t/a;改造前PM2.5排放量范围为166.55~211.09t/a,改造后为30.22~36.05t/a,排放量明显减少.餐饮业废气净化设备改造后VOCs和PM2.5减排率分别为71%~82%和80%~86%,餐饮业废气净化设备升级改造减排效果良好.计算得到以街道为单元的餐饮源VOCs和PM2.5排放强度范围分别为1.45~4.32t/km2和0.47~1.42t/km2.通过PM2.5实测浓度(小时值)数据分析,餐饮业废气净化设备升级改造前、后PM2.5浓度平均减少了28.9%,最接近于用油量为核算基准的排放因子降低比例.  相似文献   

14.
为精准识别深圳市典型商业、居住与工业混合功能区的PM2.5污染来源,选取深圳市北部地区5个点位于2017年9月~2018年8月全年进行PM2.5的样品采集和组分分析,利用优化的多元线性引擎模型(ME-2)对其主要来源及其时空变化特征进行探索.结果显示,研究区域研究时段的大气PM2.5年均浓度为29.0μg/m3,解析出了SO2二次转化(19.9%)、机动车(15.1%)、生物质燃烧(11.2%)等10种来源,其中SO2二次转化、生物质燃烧、NOx二次转化、VOCs二次转化、工业排放、老化海盐和远洋船舶源具有显著的区域传输特征,而机动车源、燃煤和扬尘具有本地源特征,受到局地排放的影响较大.重污染天气下机动车源、NOx二次转化、工业排放及生物质燃烧源的增加最为显著,加强这些源的控制是此类混合功能区PM2.5污染精细化防治的关键.  相似文献   

15.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:8,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

16.
火葬场遗体火化和祭品焚烧过程中会产生有害大气污染物,导致场所内PM_(2.5)和VOCs排放浓度较高,进而影响周边大气环境质量和人体健康.为探究火葬场场所PM_(2.5)和VOCs浓度水平及其化学组分特征,对国内11家火葬场场所的PM_(2.5)进行样品采集和监测,分析其浓度水平及组分,并对火化车间VOCs进行采样和分析,从而识别了火葬场场所PM_(2.5)和VOCs及其化学组分的排放特征,在此基础上提出相应的控制对策.结果表明:由于焚烧设备密闭性较差及污染控制程度低且废气低空排放,导致火葬场场所PM_(2.5)浓度较高,火化车间PM_(2.5)的平均排放浓度可达670μg·m~(-3),厂界PM_(2.5)的平均排放浓度为305μg·m~(-3),远高于环境空气浓度水平;火葬场场所PM_(2.5)化学组分中有机物占比较高,火化车间VOCs的主要化学组分为烯烃、烷烃、苯及苯系物.为降低火葬场场所的污染浓度,应加强焚烧设备的运行和维护,减少无组织排放,遗体火化机和祭品焚烧炉应安装高效的烟气净化装置,提升污染物的去除效率,保护周边环境和人体健康.  相似文献   

17.

以江苏省常州市典型纺织工业园区为例,在其周边区域采集PM2.5和PM10样品,通过微波消解的前处理方法,采用电感耦合等离子体质谱仪(ICP-MS)测定样品中的Sb、Co、V、Pb、Cd、As、Cu、Ni和Cr浓度,分析夏、冬两季样品中重金属浓度特征及季节变化规律,利用正定矩阵因子模型(PMF)和美国国家环境保护局(US EPA)健康风险评估模型评估其来源及健康风险。结果表明:该纺织工业园区周边夏、冬两季PM2.5的平均浓度分别为64.41和109.29 μg/m3,PM10的平均浓度分别为89.08和146.65 μg/m3,冬季PM2.5和PM10浓度水平分别是夏季的1.70和1.65倍,均呈冬季大于夏季的特征;纺织工业园区周边大气颗粒物中As出现超标现象,最大超标倍数为GB 3095—2012《环境空气质量标准》参考浓度限值的33.3倍,冬季各金属浓度水平均大于夏季;PMF模型分析表明,纺织工业园区周边区域PM2.5和PM10中各重金属的主要来源为道路扬尘和工业排放复合源,其在夏、冬季的贡献率分别为59.7%、64.2%;健康风险模型表明,暴露在冬季PM2.5和PM10中,儿童的总非致癌风险系数分别为1.13和1.20(>1.00),存在非致癌风险,男性和女性的Cr、As致癌风险指数均超过阈值(10−6~10−4),存在致癌风险,处于不可接受水平。

  相似文献   

18.
深圳市大气细粒子(PM_(2.5))中汞的污染特征   总被引:2,自引:1,他引:2  
于2008年8月─2009年1月系统地采集了深圳市学院区和工业区的大气PM2.5样品,应用冷原子荧光法分析颗粒态总汞的含量〔以(ρ(汞)计〕.结果表明:深圳市大气PM2.5中ρ(汞)为1.93~249.27 pg/m3,平均值为72.11 pg/m3,与国内外同类研究的结果相比,其处于中等污染水平.PM2.5中ρ(汞)存在较大的季节和功能区差异,且季节差异更为显著,冬季污染最重,夏季次之,秋季最轻.夏季PM2.5中汞污染水平较高的原因:①受局地燃煤电厂排放量增加的影响;②由于台风外围下沉气流导致污染物在局地累积.从功能区差异来看,受局地燃煤电厂排放的影响,工业区PM2.5中汞的污染水平显著高于学院区.但在秋季,由于受集中的生物质燃烧排放的影响,学院区PM2.5中ρ(汞)约为工业区的1.51倍.此外,利用TEOM同步测定了学院区PM2.5中的w(汞),范围为0.19~3.43μg/g,平均值为1.11μg/g,冬季明显高于夏、秋季.PM2.5中w(汞)和温度呈显著负相关,说明温度是影响颗粒态汞的重要因素.  相似文献   

19.
为分析深圳市大气细颗粒物(PM2.5)浓度长期持续下降的原因,进而明确PM2.5下一步减排潜力和精细化管理方向,本研究基于2019年在深圳市西乡点位采集的PM2.5样品,分析了西乡PM2.5的化学组成及季节分布特征.结果表明,2019年西乡点位PM2.5年均浓度为29.4μg/m3,总体上呈现夏低冬高的季节特征,有机物(OM)和硫酸根(SO42-)仍是主要的组分,分别占总质量的42.3%和17.6%.对2009、2014、2019年典型月份PM2.5的组分进行对比,PM2.5全年质量浓度从42.3μg/m3(2009年)下降至24.6μg/m3.(2019年),OM、SO42-、硝酸根(NO3-)、铵根(NH4+)和元素碳(EC)等都有明显的下降趋势.矿物质元素(Al、Ca)是地面扬尘和建筑尘的标识组分,近年来Al、Ca浓度的增加趋势表明宝安区西乡扬尘的影响在逐渐扩大.2009、2014、2019年OC/EC的值逐渐扩大,说明了一次燃烧源排放的影响逐渐减小,但二次有机物(SOC)的贡献逐渐凸显.通过分析2004、2009、2014、2019年夏、冬季PM2.5中6种主要组分变化趋势,表明6种主要组分夏冬两季皆有下降趋势,但由于气象因素导致冬季污染物受到区域传输的影响较大,夏季各组分浓度的下降幅度普遍高于冬季.总体来说深圳市PM2.5浓度持续下降的原因是深圳市对机动车、工业VOC (挥发性有机物)、远洋船舶以及一次燃烧源的管控和减排.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号