首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption characteristics of Cu and Ni on Irish peat moss   总被引:1,自引:0,他引:1  
Peat has been widely used as a low cost adsorbent to remove a variety of materials including organic compounds and heavy metals from water. Various functional groups in lignin allow such compounds to bind on active sites of peat. The adsorption of Cu(2+) and Ni(2+) from aqueous solutions on Irish peat moss was studied both as a pure ion and from their binary mixtures under both equilibrium and dynamic conditions in the concentration range of 5-100mg/L. The pH of the solutions containing either Cu(2+) or Ni(2+) was varied over a range of 2-8. The adsorption of Cu(2+) and Ni(+2) on peat was found to be pH dependent. The adsorption data could be fitted to a two-site Langmuir adsorption isotherm and the maximum adsorption capacity of peat was determined to be 17.6 mg/g for Cu(2+) and 14.5mg/g for Ni(2+) at 298 K when the initial concentration for both Cu(2+) and Ni(2+) was 100mg/L, and the pH of the solution was 4.0 and 4.5, respectively. Column studies were conducted to generate breakthrough data for both pure component and binary mixtures of copper and nickel. Desorption experiments showed that 2mM EDTA solution could be used to remove all of the adsorbed copper and nickel from the bed.  相似文献   

2.
The risk of B phytotoxicity due to high levels of B in irrigation water can be avoided by removing B from the water, before its use, through adsorption on certain adsorbents, such as magnesia (industrial MgO), if the latter can be proven to be an effective and easy to handle means for B removal. In addition, if such a material is applied as a fertilizer after its use and the adsorbed B is easily released into the soil solution, B phytotoxicity could constitute a potential hazard. The objectives of this work were to: (a) establish the optimum working conditions (equilibration time, solution to adsorbent ratio, and particle size of the adsorbent) for B adsorption, (b) assess the magnitude of B adsorption by magnesia, both in capacity and intensity terms, as well as the influence of temperature, (c) study B desorbability from magnesia, spiked with B at two rates, 5 and 0.5 mg g(-1), and (d) compare the results from b and c to those obtained using reagent grade MgO. The results showed that the time to achieve equilibrium depended on the B concentration of the external solution and ranged from 6 h (for B /= 50 mg L(-1)). The percentage of B adsorbed decreased as the volume of external solution to adsorbent increased and a working ratio of 50:1 was selected. For magnesia, B adsorption was particle size dependent with the smallest fraction (<0.1 mm) sorbing more B than the other three fractions studied (0.1-1.0, 1.1-2.0, 2.1-4.0 mm). Boron adsorption was conducted under strongly alkaline pH (10.3 +/- 0.2 and 10.4 +/- 0.1 for the reagent and magnesia, respectively) and increased with temperature. Both adsorbents exhibited a high B adsorption capacity (Langmuir maximum values were 5.85 +/- 0.39 and 4.45 +/- 1.31 mg B g(-1) for the reagent and magnesia, respectively) comparable to other metal oxides. However, the reagent grade MgO seemed to be superior to magnesia in terms of capacity and strength of B retention. This superiority of the reagent was attributed to its greater surface area (34.7 compared with 5.8 m(2) g(-1) for magnesia) and to its conversion to Mg(OH)(2) during the adsorption process, whereas magnesia remained unaltered, as was evident from X-ray diffractograms. Based on this data, magnesia seems to be an effective means for removing excess B from irrigation water, particularly if a material of fine particle size is used. Boron desorbability after 240 h of desorption time was more pronounced for magnesia reaching up to 55 and 60% of the amount of B added, at the spiked rates of 5 and 0.5 mg g(-1), respectively. Although these figures indicate that approximately half of the amount of B added remained adsorbed, they cannot be easily extrapolated to field conditions, and if B-laden magnesia is applied to soils, the possibility of B phytotoxicity cannot be excluded.  相似文献   

3.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   

4.
The present study investigated the effectiveness of an inexpensive and ecofriendly alumino silicate clay mineral, sericitic pyrophyllite, as an adsorbent for the possible application in the removal of some divalent toxic metal cations such as Pb(2+), Cu(2+)and Zn(2+) from aqueous systems. Batch scale equilibrium adsorption studies were carried out for a wide range of initial concentration from 24.1 to 2410mumolL(-1) for lead, 78.65 to 7865mumolL(-1) for copper and 76.45 to 7645mumolL(-1) for zinc solutions. The removal of Pb(2+) was almost complete at low concentration (maximum lead removal capacity, LRC, 32mg of lead/g of pyrophyllite) with 10gL(-1) of adsorbent in a 30min equilibration time. The effects of temperature on adsorption of heavy metal ions were studied. The applicability of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models in each case of lead, copper and zinc adsorption was examined separately at different temperatures. The adsorption process was found to be endothermic and the Freundlich adsorption model was found to represent the data at different temperatures more suitably.  相似文献   

5.
ABSTRACT: Values of dry biomass of corn, sugarcane, sorghum, rice, taro, millet, cotton, cowpeas, soybeans, and velvet beans as related to the evapotranspiration (ET) were studied. The linear regression model was sufficiently accurate to establish the crop dry biomass and ET relations. A water-use efficiency index (WUE), which is defined as the additional crop dry biomass per unit ET, is used in this study. The WUE were grouped into high, medium, and low categories. The WUE varied from greater than 35 kg ha-1/mm for the high category, between 15 and 35 kg ha-1/mm for the medium category, and less than 15 kg ha-1/mm for the low category. Application of the established model to the Everglades Agricultural Area, Florida, showed that the regional El can be predicted from the known regional crop yields. The crop yield and ET relations could be used as a potential tool to improve water resources planning and management practices for crop production.  相似文献   

6.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   

7.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   

8.
The use of low-cost adsorbents was investigated as a replacement for current costly methods of removing metals from aqueous solution. Removal of copper (II) from aqueous solution by different adsorbents such as shells of lentil (LS), wheat (WS), and rice (RS) was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cu (II) on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. The maximum adsorption capacities for Cu (II) on LS, WS and RS adsorbents at 293, 313 and 333 K temperature were found to be 8.977, 9.510, and 9.588; 7.391, 16.077, and 17.422; 1.854, 2.314, and 2.954 mg g(-1), respectively. The thermodynamic parameters such as free energy (delta G0), enthalpy (delta H0) and entropy changes (delta S0) for the adsorption of Cu (II) were computed to predict the nature of adsorption process. The kinetics and the factors controlling the adsorption process were also studied. Locally available adsorbents were found to be low-cost and promising for the removal of Cu (II) from aqueous solution.  相似文献   

9.
Adsorption-desorption of copper (Cu2+) at contaminated levels in two red soils was investigated. The red soil derived from the Quaternary red earths (clayey, kaolinitic thermic plinthite Aquult) (REQ) adsorbed more Cu2+ than the red soil developed on the Arenaceous rock (clayey, mixed siliceous thermic typic Dystrochrept) (RAR). The maximum adsorption values (M(A)) that are obtained from the simple Langmuir model were 25.90 and 20.17 mmol Cu2+ kg(-1) soil, respectively, for REQ and RAR. Adsorption of Cu2+ decreased soil pH, by 0.8 unit for the REQ soil and 0.6 unit for the RAR soil at the highest loadings. The number of protons released per Cu2+ adsorbed increased sigmoidally with increasing initial Cu2+ concentration for the RAR soil, but the relationship was almost linear for the REQ soil. The RAR soil released about 2.57 moles of proton per mole of Cu2+ adsorbed at the highest Cu2+ loading and the corresponding value for the REQ soil was 1.12. The distribution coefficient (Kd) decreased exponentially with increasing Cu2+ loading. Most of the adsorbed Cu2+ in the soils was readily desorbed in the NH4Ac. After five successive extractions with 1 mol L(-1) NH4Ac (p 5.0), 61 to 95% of the total adsorbed Cu2+ in the RAR soil was desorbed and the corresponding value for the REQ soil was 85 to 92%, indicating that the RAR soil had a greater affinity for Cu2+ than the REQ soil at low levels of adsorbed Cu2+.  相似文献   

10.
Overland and shallow subsurface hydrologic transport of pathogenic Cryptosporidium parvum oocysts from cattle feces into surface drinking water supplies is a major concern on annual grasslands in California's central and southern Sierra Nevada foothills. Soil boxes (0.5 m wide x 1.1 m long x 0.3 m deep) were used to evaluate the ability of grass vegetated buffer strips to retain 2 x 10(8) spiked C. parvum oocysts in 200-g fecal deposits during simulated rainfall intensities of 30 to 47.5 mm/h over 2 h. Buffers were comprised of Ahwahnee sandy loam (coarse-loamy, mixed, active, thermic Mollic Haploxeralfs; 78:18:4 sand to silt to clay ratio; dry bulk density = 1.4 g/cm(3)) set at 5 to 20% land slope, and >/=95% grass cover (grass stubble height = 10 cm; biomass = 900 kg/ha dry weight). Total number of oocysts discharged from each soil box (combined overland and subsurface flow) during the 120-min simulation ranged from 1.5 x 10(6) to 23.9 x 10(6) oocysts. Observed overall mean log(10) reduction of total C. parvum flux per meter of vegetated buffer was 1.44, 1.19, and 1.18 for buffers at 5, 12, and 20% land slope, respectively. Rainfall application rate (mm/h) was strongly associated with oocyst flux from these vegetated buffers, resulting in a decrease of 2 to 4% in the log(10) reduction per meter buffer for every additional mm/h applied to the soil box. These results support the use of strategically placed vegetated buffers as one of several management strategies that can reduce the risk of waterborne C. parvum attributable to extensive cattle grazing on annual grassland watersheds.  相似文献   

11.
Chemical, electrochemical and flow variables were optimized to examine the effectiveness of the electrocoagulation process for the removal of copper, lead and cadmium. The electrochemical process, which uses electrodes of commercial laminate steel, was applied to simulated wastewater containing 12 mg dm(-3) of copper, 4 mg dm(-3) of lead and 4 mg dm(-3) of cadmium. The optimum conditions for the process were identified as pH=7, flow rate=6.3 cm(3) min(-1) and a current density between 31 and 54 A m(-2). When the electrode geometric area and time of electrolysis reached critical values, the copper removal reached a maximum value of 80%. A linear relationship was identified between the current density and the mass of generated sludge. In addition, a linear relationship was found between specific energy consumption and current density. The results of this investigation provide important data for the development of an industrial-scale electrolytic reactor.  相似文献   

12.
The binding efficiency of chitosan samples for Ag(+), Cd(2+), Cu(2+), Pb(2+) and Zn(2+) has been evaluated in order to consider their application to remediate metal contaminated soil and water. The sorption behaviour of metal ions was assessed using a batch technique at different contact time and initial metal concentration with different background electrolytes. The kinetics followed a pseudo-second-order model, while the equilibrium data correlated well with the Freundlich and Langmuir isotherm models. For example, the maximum sorption capacity (Q) for chitosan was estimated as 1.93 mmol/g for Ag(+), 1.61 mmol/g for Cu(2+), 0.94 mmol/g for Zn(2+), 0.72 mmol/g for Cd(2+) and 0.64 mmol/g for Pb(2+). Covalent interaction between metal ions and functional groups (amino and hydroxyl) of the chitosans was the main binding mechanism. Ion exchange is not an important process. Chitosan and cross-linked chitosans were able to bind metal ions in the presence of K(+), Cl(-) and NO(3)(-). The nature of Cl(-) and NO(3)(-) ions did not affect Zn(2+) binding by the chitosans. Even at 11x dilution, the chitosans were able to retain metal ions on their surfaces.  相似文献   

13.
Previous research has shown that plant diversity influences N and P cycles. However, the effect of plant diversity on complete ecosystem N and P budgets has not yet been assessed. For 20 plots of artificially established grassland mixtures differing in plant diversity, we determined N and P inputs by bulk and dry deposition and N and P losses by mowing (and subsequent removal of the biomass) and leaching from April 2003 to March 2004. Total deposition of N and P was 2.3 +/- 0.1 and 0.2 +/- 0.01 g m(-2) yr(-1), respectively. Mowing was the main N and P loss. The net N and P budgets were negative (-6.3 +/- 1.1 g N and -1.9 +/- 0.2 g P m(-2) yr(-1)). For N, this included a conservative estimate of atmospheric N(2) fixation. Nitrogen losses as N(2)O were expected to be small at our study site (<0.05 g m(-2) yr(-1)). Legumes increased the removal of N with the harvest and decreased leaching of NH(4)-N and dissolved organic nitrogen (DON) from the canopy. Reduced roughness of grass-containing mixtures decreased dry deposition of N and P. Total dissolved P and NO(3)-N leaching from the canopy increased in the presence of grasses attributable to the decreased N and P demand of grass-containing mixtures. Species richness did not have an effect on any of the studied fluxes. Our results demonstrate that the N and P fluxes in managed grassland are modified by the presence or absence of particular functional plant groups and are mainly driven by the management.  相似文献   

14.
Retention of gases by hexadecyltrimethylammonium-montmorillonite clays   总被引:1,自引:0,他引:1  
Intercalated montmorillonite clays with different amounts of organic hexadecyltrimethylammonium (HDTMA) cations were studied to analyse their CO, CH(4), and SO(2) gas retentions. Equilibrium adsorption was measured by using a standard volumetric apparatus at 25 degrees C and 0.1 MPa. The solids were characterised by X-ray diffraction. The levels of adsorption of SO(2) by organo-montmorillonites (0.3595-1.6403 mmol/g) were higher than those of CO (up to 0.0202 mmol/g) and CH(4) (up to 0.0273 mmol/g) gases. HDTMA montmorillonites may be effective adsorbents for removing SO(2) and for its potential separation in the presence of CO and/or CH(4) molecules, which can be present in contaminated air.  相似文献   

15.
We studied the long-term in situ accumulation of Cu, Cr, Ni, and Zn in the soil profile of a large-scale effluent recharge basin after 24 yr of operation in a wastewater reclamation plant using the Soil Aquifer System approach in the Coastal Plain of Israel. The objective was to quantify metals accumulation in the basin's soil profile, clarify retention mechanisms, and calculate material balances and metal removal efficiency as the metal loads increase. Effluent recharge led to measurable accumulation, relative to the pristine soil, of Ni and Zn in the 0- to 4-m soil profile, with concentration increases of 0.3 to 1.3 mg kg(-1) and 2.9 to 6.4 mg kg(-1), respectively. Copper accumulated only in the 0- to 1-m top soil layer, with concentration increase of 0.28 to 0.76 mg kg(-1). Chromium concentration increased by 3.1 to 7.3 mg kg(-1) in the 0- to 1-m horizon and 0.9 to 2.3 mg kg(-1) at deeper horizons. Sequential selective extraction showed Cu tended to be preferentially retained by Fe oxides and organic matter (OM), Cr by OM, Ni by OM, and carbonate and Zn by carbonate. The average total retained amounts of Cu, Cr, Ni, and Zn were 0.7 +/- 1.0, 13.6 +/- 4.8, 4.3 +/- 3.6, and 28.7 +/- 5.4 g per a representative unit soil slab (1 m(2) x 4 m) of the basin, respectively. This amounts to 3.6 +/- 4.9%, 79.5 +/- 28.0%, 8.0 +/- 6.9%, and 9.3 +/- 1.8% of the Cu, Cr, Ni, and Zn loads, respectively, applied during 24 yr of effluent recharge (total of approximately 1880 m effluent load). The low long-term overall removal efficiency of the metals from the recharged effluent in the top horizon may be due to the metals' low concentrations in the recharged effluent and the low adsorption affinity and retention capacity of the sandy soil toward them. This leads to attainment of a quasi-equilibrium and a steady state in element distribution between the recharged effluent solution and the soil after few years of recharge and relatively small cumulative effluent loadings.  相似文献   

16.
Rice (Oryza sativa L.) plants were cultivated in an experimental field and separated at harvest into different components, including polished rice, rice bran, hull, straw, and root. The contents of iodine in these components and the soil were determined by inductively coupled plasma-mass spectrometry and radiochemical neutron activation analysis, respectively. Iodine content varied by more than three orders of magnitude among the plant components. Mean concentration of iodine in the entire plants was 20 mg kg(-1) dry weight, and the concentration of iodine in the surface soil (0-20 cm depth) was 48 mg kg(-1). The highest concentration of iodine (53 mg kg(-1) dry weight) was measured in root and the lowest concentration (0.034 mg kg(-1) dry weight) in polished rice. While the edible component (polished rice) accounted for 32% of the total dry weight, it contained only 0.055% of iodine found in the entire rice plants. Atmospheric gaseous iodine (5.9 ng m(-3)) was estimated to contribute <0.2% of the total iodine content in the biomass of rice plants; therefore nearly all of the iodine in the rice plants was a result of the uptake of iodine from the soil. The content of iodine in the aboveground part of rice plants was 16 mg kg(-1) dry weight and the percentage of iodine transferred per cropping from the soil into the aboveground biomass corresponded to 0.27% (20 mg m(-2)) of the upper soil layer content.  相似文献   

17.
Recycling and conservation efforts for water are the need of the day because of the lack of new water sources and the ever-increasing demand for drinking water. Seedlings of Acacia nilotica L. were irrigated with: canal water (T1, control); municipal effluent (T2); textile effluent (T3); steel effluent (T4); textile + municipal effluent in 1:1 ratio (T5); steel + municipal effluent in 1:2 ratio (T6); steel + textile in 1:2 ratio (T8) and steel + municipal + textile in 1:2:2 ratio (T7) with views to observe effluents effect on the seedlings and its adaptability and to recommend safe disposal of these effluents. Seedlings in T6, T7 and T8 showed 50% lesser height and collar diameter than those in control. Seedlings in T2 attained greatest height, collar diameter, numbers of branches and produced 140 g dry biomass seedling−1. Highest concentration of manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) and lowest concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in the seedlings of T4, T6, T7 and T8 resulted in nutritional imbalance, mineral toxicity and reduction in photosynthetic (Pn) and transpiration (E) rates and caused seedling mortality. Seedlings of T3 had highest sodium concentration and low concentration of Ca, Mg and micronutrients resulting in nutritional imbalance, augmented chlorosis and reduced gas exchange and biomass by half as compared to control. Increased growth, Pn and E and biomass in seedlings of T5 over T3 and survival period in T6, T7 and T8 seedlings suggested a beneficial effect of effluents mixing. Unscientific disposal should be avoided and toxic concentration of metal ions␣may be reduced for long-term application and harmless disposal of effluents in afforestation and urban development.  相似文献   

18.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

19.
Permeable grass-covered surfaces can reduce the quantity of storm water runoff and filter out potentially harmful chemicals. The objective of this study was to develop permeable structural soils that sustained healthy turf growth and filtered heavy metals from contaminated pavement runoff. The basic soil medium was a 50:50 mixture (v/v) of expanded shale (ExSh) and quartz sand (QS). The ExSh component consisted of (i) large-diameter particles (3-6 mm), (ii) small-diameter particles (1-3 mm), or (iii) a 50:50 mixture (v/v) of the two. The basic blends were mixed with 0, 10, and 20% sphagnum peat moss (v/v) and 0, 10, and 20% natural zeolites (v/v) and placed in 15-cm-diameter pots in a greenhouse. Bermudagrass plugs were planted in each pot. The addition of sphagnum peat moss to the basic ExSh/QS blend increased bermudagrass growth and improved plant response to added fertilizer. Zeolites had no significant effect on plant growth in the absence of sphagnum peat moss. Growing mediums that contained 10 to 20% sphagnum peat moss and 10 to 20% zeolites consistently produced more bermudagrass biomass than the unamended ExSh/QS mixture. Changing the ratio of small- to large-diameter ExSh in the basic medium did not affect bermudagrass yield. Very low amounts of Cd, Cu, Pb, and Zn were recovered in leachate after the addition of 10 mg metal per pot, suggesting that most heavy metals (>99%) were retained in the growing mediums. Zeolites reduced the amount of Cd and Pb in leachate water, but not Cu or Zn.  相似文献   

20.
The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved organic carbon (DOC) concentrations. Experimental data were compared to the predictions from the Windermere Humic Aqueous Model (WHAM) Version VI. At the same pH, ionic strength, and temperature, the zinc titration curves for NOM samples from different surface water sources tested in our study almost overlapped each other, indicating similarity in zinc binding properties of the NOM. A discrete two-site model gave good fits to our experimental titration data. Non-linear fitting by FITEQL 4.0 shows that the conditional zinc binding constants at the same pH are similar for NOM from different sources, indicating that zinc complexation characteristics of the NOM used in our study do not depend on their origin and one set of binding parameters can be used to represent Zn-NOM complexation for NOM samples from those different surface water sources representing geographically diverse locations. In addition, the total ligand concentrations (L(1,T), L(2,T), and L(T)) of all NOM show no observable gradation with increasing pH (L(1,T)=2.06+/-0.80 mmol/g carbon; L(2,T)=0.12+/-0.04 mmol/g carbon; L(T)=2.18+/-0.78 mmol/g carbon), while the conditional binding constants of zinc by NOM (logK(ZnL)(c)) show a linear increase with increasing pH(logK(1)(c)(pH=6.0)=4.69+/-0.25; logK(1)(c)(pH=7.0)=4.94+/-0.10; logK(1)(c)(pH=8.0)=5.25+/-0.006; logK(2)(c)(pH=6.0)=6.29+/-0.13; logK(2)(c)(pH=7.0)=6.55+/-0.08; logK(2)(c)(pH=8.0)=6.86+/-0.023) with a slope of ca. 0.28, indicating the zinc-NOM complexes become more stable at higher pH. The WHAM VI predicted free zinc ion activities at high zinc concentrations agree with our experimental results at pH 6.0, 7.0, and 8.0. However, the zinc binding of these NOM samples is over estimated by WHAM VI at zinc concentrations below 10(-6) M at pH 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号