首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The cardinalfish Siphamia versicolor (Perciformes: Apogonidae) forms a bioluminescent symbiosis with the marine luminous bacterium Photobacterium mandapamensis, harboring the bacteria in a ventral, disc-shaped light organ and using the bacterial light apparently for counterillumination and attracting prey. Little definitive information has been available on the developmental and microbiological events surrounding the initiation of symbiosis, a critical stage in the life history of the fish, in S. versicolor or any of the many other species of bacterially luminous fish. To identify the stage at which light organ formation begins, to determine the origin of cells forming the light organ, and to characterize its bacterial colonization status during development, early developmental stages of S. versicolor obtained and reared from wild-caught mouth-brooding males were examined with histological and microbiological methods. A light organ primordium was not evident in embryos, post-embryos, or pre-release larvae, whereas the light organ began to form within 1 day of release of full-term pre-flexion larvae from the mouths of male fish. Analysis of post-release larvae revealed that the light organ arises from a proliferation and differentiation of intestinal epithelial cells, and that it quickly develops structural complexity, including the formation of chambers and gaps contiguous with the intestinal epithelium. However, the nascent light organ remained uncolonized by the symbiotic bacteria through several days of post-release development, even in the presence of high numbers of the symbiotic bacteria. These results demonstrate that the inception of light organ formation in S. versicolor occurs independently of its symbiotic bacteria and that receptivity to bacterial colonization apparently requires substantial post-release development of the light organ. Larvae therefore most likely acquire their symbiotic bacteria from seawater, during or shortly after the transition from the pre-flexion to the flexion developmental stage.  相似文献   

2.
The mutualism between the Hawaiian bobtail squid Euprymna scolopes and the luminescent symbiont Vibrio fischeri has been used extensively as a model system for studies ranging from co-speciation and biogeography to gene regulation and the evolution of pathogenesis. In this association, the luminescent bacterium V. fischeri is housed in a complex light organ within the mantle cavity of E. scolopes. Prior hypotheses have assumed that sepiolid squids in general utilize the bioluminescence produced by their V. fischeri symbionts for counterillumination, a behavior that helps squid camouflage themselves by matching down-welling moonlight via silhouette reduction. This assumption, based solely on the morphology of the squid light organ, has never been empirically tested for Euprymna in the laboratory. Here, we present data demonstrating that E. scolopes can modify the intensity of light produced by V. fischeri in the light organ as down-welling light intensity changes. Bacterial bioluminescence from the light organ is directly correlated with down-welling light intensity, suggesting that E. scolopes individuals utilize and control V. fischeri luminescence for counterillumination.Communicated by P.W. Sammarco, Chauvin  相似文献   

3.
The light organs of monocentrid and anomalopid fishes consist of bacteria-filled tubular invaginations of the epidermis which are connected to the surrounding seawater by ducts. We used the release of bacteria from the light organs to estimate bacterial rates of growth in the light organs. For one monocentrid fish (4 specimens of Monocentris japonicus collected at Jogashima, Japan in 1980) and for two anomalopid fishes (2 specimens each of Photoblepharon palpebratus collected at Sebu, Phillipines in 1981 and Grand Comore Island in 1975 and Kryptophanaron alfredi collected at Parguera, Puerto Rico in 1982) we measured rates of release of bacteria into the surrounding seawater and the bacterial population sizes in the light organs; from this information we calculated doubling times of bacteria in the light organs. In addition, we determined the luminescence of bacteria after their release into the seawater. For M. japonicus, two specimens released 1.1 to 6×106 and 2×107 bacteria h–1, respectively; the light organs contained about 1.5×108 bacteria. For P. palpebratus, one specimen released 2.2×108 bacteria h–1; a second specimen had light organs containing 5.2×109 bacteria. For K. alfredi, one specimen released 7×107 bacteria h–1 and had light organs containing 5.6×108 bacteria; a second specimen released 3.6×107 bacteria h–1 and had light organs containing 7.3×108 bacteria. Bacterial doubling times in the light organs of these three fishes were variable and ranged from 7.5 to 135 h in M. japonicus and 8 to 23 h in the anomalopids. Bacteria released from M. japonicus into the seawater remained viable, but bacteria from all of the fishes soon ceased to emit light.  相似文献   

4.
Juveniles of Leiognathus nuchalis were raised from fertilized eggs for up to 60 d and examined for luminescence activity. Almost all juveniles raised separately from adults failed to produce detectable light. In contrast, a significant percentage (33 to 100%) of the juveniles became luminescent in less than 48 h when they were either kept with adults or inoculated with a homogenate of the adult light organs. The luminescence tended to increase with time after the treatments. These findings suggest that: (1) most of L. nuchalis offspring typically hatch and develop apo-symbiotically and (2) at least 45 d after hatching, juveniles can be infected with symbiotic luminous bacteria from the light organ of adult fish, and thereby gain the ability to produce light. Received: 16 February 1999 / Accepted: 21 September 1999  相似文献   

5.
We investigated the influence of bacteria and metazooplankton on the production of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) during blooms of Emiliania huxleyi (Lohmann) Hay and Mohler in seawater mesocosms. The phytoplankton succession was marked by the rapid collapse of an initial Skeletonema costatum (Greville) Cleve bloom followed by a small E. huxleyi bloom. The collapse of the diatom bloom was accompanied by an increase in concentrations of dissolved DMSP (DMSPd) and bacterial abundance and activity (as determined by the thymidine incorporation technique). The increase in bacterial activity was followed by a rapid decrease in DMSPd concentrations which remained low for the rest of the experiment, even during the subsequent collapse of the E. huxleyi blooms. The absence of DMSPd and DMS peaks during the declining phase of the E. huxleyi blooms was attributed to the high bacterial activity prevailing at that time. The influence of metazooplankton grazing on DMSP and DMS production was investigated by adding moderate (24 mg dry weight m-3) and high (520 mg dry weight m-3) concentrations of Copepodite Stage V and adults of Calanus finmarchicus to two of four filtered (200 m mesh net) enclosures during the E. huxleyi blooms. The addition of C. finmarchicus, even in high concentrations, had no apparent effect on the dynamics of E. huxleyi, suggesting that the copepods were not grazing significantly on nanophytoplankton. The addition of copepods in high concentrations favored an accumulation of chlorophyll a and particulate DMSP. These results suggest that copepods were preying on the herbivorous microzooplankton which, in turn, was controlling the biomass of nanophytoplankton. DMS production was also enhanced in the enclosure with maximum metazooplankton biomass, suggesting that the grazing of C. finmarchicus on microzooplankton containing DMSP may contribute to DMS production. These results provide strong support to the emerging idea that bacteria and metazooplankton grazing play a dominant role in determining the timing and magnitude of DMS pulses following phytoplankton blooms.  相似文献   

6.
We investigated the constraints on sulfide uptake by bacterial ectosymbionts on the marine peritrich ciliate Zoothamnium niveum by a combination of experimental and numerical methods. Protists with symbionts were collected on large blocks of mangrove-peat. The blocks were placed in a flow cell with flow adjusted to in situ velocity. The water motion around the colonies was then characterized by particle tracking velocimetry. This shows that the feather-shaped colony of Z. niveum generates a unidirectional flow of seawater through the colony with no recirculation. The source of the feeding current was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical modeling shows that sulfide oxidizing bacteria on the surfaces of Z. niveum can sustain 100-times higher sulfide uptake than bacteria on flat surfaces, such as microbial mats. The study demonstrates that the filter feeding zooids of Z. niveum are preadapted to be prime habitats for sulfide oxidizing bacteria due to Z. niveum’s habitat preference and due to the feeding current. Z. niveum is capable of exploiting low concentrations of sulfide in near norm-oxic seawater. This links its otherwise dissimilar habitats and makes it functionally similar to invertebrates with thiotrophic symbionts in filtering organs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
In this study we performed a survey of the bacterial communities associated with the Western Atlantic demosponges Hymeniacidon heliophila and Polymastia janeirensis, based on 16S rRNA sequencing and transmission electron microscopy (TEM). We compared diversity and composition of the sponge-associated bacteria to those of environmental bacteria, represented by free-living bacterioplankton and by bacteria attached to organic particulate matter in superficial sediments. Partial bacterial 16S rRNA sequences from seawater, sediment, and sponges were retrieved by PCR, cloning, and sequencing. Sequences were subjected to rarefaction analyses, phylogenetic tree construction, and LIBSHUFF quantitative statistics to verify coverage and similarity between libraries. Community structure of the free-living bacterioplankton was phylogenetically different from that of the sponge-associated bacterial assemblages. On the other hand, some sediment-attached bacteria were also found in the sponge bacterial community, indicating that sponges may incorporate bacteria together with sediment particles. Rare and few prokaryotic morphotypes were found in TEM analyses of sponge mesohyl matrix of both species. Molecular data indicate that bacterial richness and diversity decreases from bacterioplankton, to particulate organic sediment, and to H. heliophila and P. janeirensis. Sponges from Rio de Janeiro harbor a pool of novel and exclusive sponge-associated bacterial taxa. Sponge-associated bacterial communities are composed of both taxons shared by many sponge groups and by species-specific bacteria.  相似文献   

8.
Seven species of marine bryozoans were examined for the presence of bacteria associated with the larvae. In three species (Bugula neritina, B. pacifica, and B. simplex), rod-shaped bacteria were consistently observed in the pallial sinus of the larvae, independent of geographic location, year, or season. Larvae of closely related bryozoans (B. stolonifera, B. turrita, Scrupocellaria bertholetti, and Tricellaria occidentalis) occurring sympatrically with those containing bacteria lacked this apparent symbiosis. Those bryozoans examined that possessed the bacteria-larva association are among the most frequently encountered fouling bryozoans.  相似文献   

9.
P. Jensen 《Marine Biology》1995,123(1):131-136
Field and laboratory studies from 1989 to 1994 of the nematode Theristus (Penzancia) anoxybioticus Jensen, 1995 inhabiting muddy sediment at methane seepages in the northern Kattegat, Denmark, have revealed a series of biological features of adults and juveniles not observed before in free-living marine nematodes. Reproductive adults were present in April and May only and inhabited the uppermost cm of sediment, while juveniles inhabited deep anoxic and sulphidic sediment layers during the remaining months of the year. This points to a downwards migration of newly hatched juveniles and an upwards migration during adulthood. Gut content analyses showed that adults feed mainly on benthic diatoms by swallowing whole cells while juveniles probably feed on bacteria; this differentiation in food clearly relates to the main bulk of potential food items in their respective microhabitats. The generation time is estimated to be one year, with a juvenile life span of about nine months, which is four to eight times longer than that found in related aerobic species of similar body size. Adults survived in oxic water but 50% died within 15 h in hypoxic water (5 to 6% atm sat), and all died within 12 h in anoxic water. Juveniles on the other hand died within 0.5 h in oxic water but survived anoxic water for at least 15 d. These results suggest that juveniles of T. anoxybioticus are adapted to an anaerobic life style.  相似文献   

10.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

11.
A number of previous studies have shown that the relationships of symbiosis existing between mussels and microorganisms are directly dependent on the environmental conditions. However, little is known about existing relationships between mussels and bacteria in hydrocarbon-impacted marine environments. The aim of this preliminary study is to investigate the presence of oil-degrading bacteria in the mussel Mytilus galloprovincialis during growth in polluted ecosystems. All the experiments were carried out in a mesocosm system designed to simulate chronic pollution and to enable direct exposure of mussels to chemicals. Quantitative (4′,6-diamidino-2-phenylindole, colony-forming units, Most Probable Number) analyses and screening (presence/absence) of metabolic functional genes were performed to analyse bacterial populations inside the gills of mussels exposed and not exposed to hydrocarbons. The data obtained show that the presence of hydrocarbons affected the abundance of bacteria inside the gills of specimens and determines selection for specific (hydrocarbon-degrading) bacteria (i.e. Alcanivorax sp. and Marinobacter sp.). However, is not yet clear whether the presence of such genera of bacteria inside the mussel is due to symbiosis or as a result of filtration.  相似文献   

12.
Larval settlement in the marine polychaete Hydroides elegans (Haswell) is induced by certain bacteria in marine biofilms. The exact nature of the settlement cue that larvae of H. elegans receive from these bacteria remains unknown. In this study, we revealed some properties of the bacterially derived larval settlement cue by investigating the larval settlement inductive activity of two bacterial strains after various treatments. These two bacterial strains, Roseobacter sp. and an α-subclass Proteobacteria, are highly inductive to larval settlement of H. elegans. The larvae responded similarly to Roseobacter and Proteobacteria in all the larval settlement bioassays, suggesting that the larval settlement-inducing substances produced by these bacteria may share common characteristics. First of all, the larvae did not settle in the seawater conditioned by the bacteria attached as a film or by the bacteria that were freely suspended in seawater. The results suggest that the putative larval settlement cue is not released into seawater and, therefore, should be associated with the surface of the bacteria. Secondly, formaldehyde treatment entirely eliminated the larval settlement induction activity of the bacterial films, and streptomycin treatment reduced the percentage of larval settlement on the bacterial films in a concentration-dependent manner. Since both treatments can kill bacteria with little damage to the surface chemistry of bacterial cells, the decline in larval settlement is suggested be due to a reduction of the viable bacterial population in the bacterial films. In fact, the reduction of larval settlement in the streptomycin treatments coincided with the decrease in viable bacterial populations in broth cultures containing respective concentrations of streptomycin. These results suggest that the viability of Roseobacter and Proteobacteria is important to their settlement induction effect. Since the larval settlement induction activity of the bacterial strains appears to correlate with their viability, we suggest that the putative larval settlement cue is derived from a metabolic pathway in the bacteria and that the cue is exported to and concentrated at the extracellular polymer matrix of the bacterial cell, at which the larvae establish contact with the bacteria. The larval settlement cue may be highly susceptible to degradation so that a metabolically active bacterial film is needed to maintain the putative cue at a concentration that surpasses the threshold for induction of larval settlement. Received: 14 October 1998 / Accepted: 5 September 2000  相似文献   

13.
We investigated the effect of different densities of the burrowing deposit-feeding amphipod Monoporeia affinis on the potential for recruitment of zooplankton from benthic resting eggs. Hatching of resting eggs was induced in the laboratory on sliced and resuspended 1-cm depth-sections of sediment cores, collected at six stations in an archipelago area of the Gulf of Bothnia, Baltic Sea. The uppermost 5 cm of the sediment was studied. The most common species that hatched was Eurytemora affinis (Copepoda). Individuals from another copepod genus, Acartia, hatched in significant numbers only in the cores from two stations with low amphipod abundance. Cores from stations with high amphipod densities showed a deeper distribution of emerging E. affinis nauplii compared with stations with few amphipods; the oxidised sediment layer was also deeper at high M. affinis densities than at low. Total (0 to 5 cm strata pooled) number of hatched E. affinis nauplii was independent of amphipod density. This indicates that the effect of M. affinis on E. affinis eggs involves deeper burial due to bioturbation, rather than predation. Decreased benthic recruitment of zooplankton at localities with high M. affinis density is suggested, since more deeply positioned eggs are less likely to hatch. When hatching was induced in intact, non-sliced cores from one station, the number of E. affinis nauplii that hatched was on average 43% of the number that hatched in the upper centimetre of the sliced cores from the same station. This fraction (43%), if applied to the other stations, implied a potential for benthic recruitment of up to 80 000 ind m−2 for E. affinis. Due to its high abundance, M. affinis is likely to greatly reduce benthic recruitment of zooplankton in this system. Received: 17 September 1999 / Accepted: 23 February 2000  相似文献   

14.
F. Schiemer  R. Novak  J. Ott 《Marine Biology》1990,106(1):129-137
The marine, free-living Stilbonematinae (Nematoda: Desmodoridae) are remarkable for the ectosymbiotic, prokaryotic microorganisms that populate their entire body surface. These nematodes occur in sulfidic sediments in the microoxic zone just above the sulfide maximum. Several facts point to a chemolithotrophic, sulfide oxidizing nature of the microorganisms. The oxygen uptake of three species was measured with and without their microbial coat using Cartesian and Gradient Diver microrespirometry in February 1989 at Carrie Bow Cay (Belize Barrier Reef). Symbiont-free stilbonematids exhibited constant and uniform oxygen uptake rates over several hours; rates which are significantly lower than those of oxyphilic nematodes. Freshly extracted stilbonematids, with intact bacterial coats, consumed significantly more oxygen than symbiont-free worms in the first 3 h of measurement. While the rates of aposymbiotic worms were more or less constant over time, the rates of symbiont-carrying worms exhibited a conspicuous drop during prolonged respiration. InStilbonema sp., symbiont carrying individuals kept under oxygenated conditions for more than 12 h had a respiration rate similar to those of aposymbiotic specimens. When such worms were re-incubated in sulfide-enriched seawater the respiration rate was significantly elevated. The possibility of recharging the oxygenated symbiosis system via sulfide-uptake is seen as an indication that storage of reduced sulfur compounds, or reserve substances synthetized in the presence of sulfide, play a decisive role in the metabolisms of the symbiotic bacteria. Migration of nematodes between sulfidic and oxidized sediment-layers are, most likely, the key to understanding the success of this nematode-bacteria symbiosis.Please address all correspondence and requests for reprints to Professor J. Ott  相似文献   

15.
Fernando Gómez 《Marine Biology》2007,151(5):1899-1906
The morphology and distribution of the diatoms Chaetoceros tetrastichon and Ch. dadayi as epiphytes on the loricae of the tintinnids Eutintinnus apertus and E. pinguis investigated in the open waters of the Pacific Ocean. The Eutintinnus–Chaetoceros consortia was encountered in 38 of the 52 sampling stations from 34°N to 33°S, and together were among represented the most wide-spread species. The abundance was low with a maximum of 32 consortia l−1 and E. apertus was often the most abundant species of the genus. The free-living Eutintinnus congeneric species showed a wider vertical distribution, whereas E. apertus–Chaetoceros tended to be near the surface. The success of E. apertus in consortium with Chaetoceros may be due to increase of the clearance rate and/or the lower susceptibility to predation. Chaetoceros modifies its morphology to adapt the epiphytic life, especially Ch. dadayi. The shorter curved setae may facilitate the transfer to the lorica of the daughter tintinnid after the cell division. The free-living Ch. tetrastichon and Ch. dadayi are very rare and Chaetoceros remained attached to empty loricae or encysted tintinnid cells. This suggests that the Eutintinnus–Chaetoceros consortium is obligate for the success of the diatom and renders the tintinnid more competitive versus congeneric species.  相似文献   

16.
The dorid nudibranch Adalaria proxima (Alder & Hancock) is a specialist predator of the cheilostome bryozoan Electra pilosa (L.). Natural induction of metamorphosis of the pelagic lecithotrophic larva of A. proxima was assessed in response to solutions from sonicated prey tissue and (live) E. pilosa-conditioned seawater (Electra-CSW). We exploited the tendency of larvae to become entrapped (rafted) at the air-water interface in cultures to examine whether larvae require direct contact with the live prey for metamorphosis to proceed. Larvae metamorphosed when rafted above colonies of live E. pilosa, above plankton mesh bags isolating live E. pilosa, and in choline chloride controls; there was no metamorphosis of larvae that were rafted in filtered seawater controls. Entrapped veliger shells remained rafted throughout the experimental period in all cases. No metamorphosis occurred in treatments containing either the supernatants or pelleted particulates obtained from sonicated colonies of E. pilosa. Both one-colony and three-colony Electra-CSW induced metamorphosis of larvae. These data are at variance with previous results in showing that direct contact with the live prey is not necessary for metamorphosis to proceed. Furthermore, the fact that competent larvae metamorphosed in response to Electra-CSW in the absence of any other cue strongly suggests that the inductive cue is water-borne.  相似文献   

17.
P. J. Krug 《Marine Biology》1998,132(3):483-494
A San Diego population of the opisthobranch mollusc Alderia modesta (Lovén, 1844) exhibits poecilogony, the presence of two development modes within a single species. In spring, half of the adults spawned masses containing ∼300 eggs with a mean diameter of 68 μm. After 3 d, these egg masses hatched planktotrophic veligers with a maximum shell dimension of 116 μm. The remaining adults spawned masses containing ∼30 eggs with a mean diameter of 105 μm. These egg masses hatched after 5 to 6 d, releasing lecithotrophic larvae with a maximum shell dimension of 186 μm. About 1% of field-collected adults produced mixed clutches containing a continuum of larval sizes, spanning the size extremes of planktotrophy and lecithotrophy and hatching larvae with a mean maximum shell dimension of 152 μm. Adults producing planktotrophic and lecithotrophic larvae were interfertile, and no hybrid breakdown was observed through the F3 generation. When starved, adults which previously produced only lecithotrophic larvae switched to producing planktotrophic larvae or mixed clutches with both planktotrophic and lecithotrophic larvae. Sequence-polymorphisms from a portion of the mitochondrial cytochrome c oxidase I gene support the conclusion that the two reproductive morphs represent a single species. Most of the lecithotrophic larvae and a small percentage of the larvae from mixed clutches were metamorphically competent within 3 d of hatching. A. modesta is the only molluscan species as yet known to have both planktotrophic and pelagic lecithotrophic development within a single natural population. Received: 14 August 1997 / Accepted: 11 April 1998  相似文献   

18.
We determined concentrations of dissolved adenosine triphosphate (DATP) and rates of its uptake by marine bacteria in seawater from the continental shelf and Gulf Stream off the southeastern USA. Dissolved adenosine triphosphate (DATP) concentrations (22 to 568 ng l–1) were highest in nearshore surface waters and at the interfaces of continental shelf water and upwelled water from the cold wall of the Gulf Stream; lowest concentrations were found in surface water furthest from shore and in subsurface waters. Bacterial population density and DATP uptake velocities were determined to calculate average rates of DATP uptake per-cell. In general, percell rates of uptake were highest in samples having the highest in situ concentrations of DATP and varied markedly with small-scale temporal and spatial changes. Per-cell uptake by attached bacteria was one to two orders of magnitude faster than uptake by free-living bacteria; this difference could be accounted for by the much larger average cell volume of the former.  相似文献   

19.
Rod-shaped bacteria were consistently observed by transmission electron microscopy in the locomotory test of larvae and in the perivisceral cavity of post-larvae of Solemya reidi, a gutless protobranch bivalve known to possess intracellular chemoautotrophic bacterial symbionts in the adult gill. Bacteria develop within granular vesicles in the larval test, where they either remain to be ingested at metamorphosis, or are released into the space separating the test and embryo, to be subsequently ingested through the larval mouth. In either case, bacteria lie within the perivisceral cavity following metamorphosis. Bacteria were not seen either in or on gametes or in gills of juveniles. It is hypothesized that these bacteria represent a transmission stage of the gill symbionts present in adult S. reidi and are not evident in gametes or gills of juveniles due to cryptic packaging within granular vesicles. Perpetuation of this symbiosis would therefore be assured through vertical transmission, as is typical of other marine invertebrate-bacteria endosymbioses.Harbor Branch Oceanographic Institution Contribution No. 602  相似文献   

20.
 California grunion Leuresthes tenuis (Teleostei: Atherinopsidae) emerge from the ocean to spawn on beaches of southern California. Grunion eggs do not hatch at a set developmental age, but remain in the sand until turbulent surf at high tide washes them out to sea. In previously studied fishes and amphibians that lay eggs terrestrially, low oxygen is the trigger for hatching in water, and high oxygen tensions inhibit hatching. For the grunion, however, eggs placed in air, seawater and oil did not hatch at any at oxygen tension until they were agitated in fluid. Following agitation in seawater, all eggs hatched within several minutes. Grunion eggs in normoxic or hyperoxic water hatched significantly faster than eggs agitated at the lowest oxygen tensions. Mechanical agitation, not hypoxia, is the environmental trigger for hatching in California grunion eggs. Received: 15 May 1999 / Accepted: 5 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号