首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
Growth and feeding activities of the tintinnid ciliate Favella taraikaensis fed the toxic dinoflagellate Alexandrium tamarense were examined in laboratory experiments. Both growth and ingestion rates of F. taraikaensis as a function of the A. tamarense concentration were fitted to a rectangular hyperbolic equation. The maximum growth and ingestion rates of F. taraikaensis were 1.0 day–1 and 2.8 cells ind. h–1 (carbon specific ingestion rates: 3.5 day–1), respectively, which are both included in the range of previous data reported for Favella spp. feeding on other algae. The gross growth efficiency (GGE) of F. taraikaensis ranged from 0.26 to 0.49 (mean value 0.40) at the concentration of 10–800 cells ml–1, which is within the range of previous data on Favella spp. Also, the growth and ingestion rates and GGE of F. taraikaensis on A. tamarense were not significantly different from the values on another non-toxic dinoflagellate (Heterocapsa triquetra) at two different prey concentrations. This indicates that the toxicity of A. tamarense probably did not influence the feeding and growth activities of F. taraikaensis at concentrations of less than ca. 800 cells ml–1. To evaluate the grazing by F. taraikaensis on A. tamarense blooms in the field, the population dynamics of A. tamarense were simulated based on the growth and ingestion parameters of F. taraikaensis. As a result, the grazing impact by F. taraikaensis was considered to potentially regulate the development of A. tamarense blooms. If the toxicity of A. tamarense does not influence the growth and feeding activities of F. taraikaensis, the occurrence of such grazer plankton are considered to be important for predicting the course of A. tamarense bloom dynamics under natural conditions.Communicated by T. Ikeda, Hakodate  相似文献   

3.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

4.
To investigate copepod nauplii ingestion rates on phytoplankton, we have adapted the traditional gut fluorescence technique as it can be used with lower gut pigment concentrations. With the improved technique, laboratory experiments were performed to estimate functional responses for nauplii of Calanus helgolandicus and Centropages typicus. Nauplii were raised from eggs to copepodites and the experiments were performed with stages NIV-NV. Gut evacuation rates and ingestion rates were measured on Isochrysis galbana at different concentrations. Specific ingestion rates ranged between 0.038–0.244 μg C μg−1 nauplii C d−1 for C. typicus and 0.041–1.412 μg C μg−1 nauplii C d−1 for C. helgolandicus. Both species showed a type III functional response, reaching a saturation concentration at around 600 μgC l−1 for C. typicus and 800 μgC l−1 for C. helgolandicus. An erratum to this article can be found at  相似文献   

5.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

7.
In July 1988 a survey was made in the Dogger Bank area of the North Sea. As a result of wind stress the area was found to be frequently well mixed. At the northerly slope a transition zone was observed between the stratified central North Sea and the well-mixed Dogger Bank area. Low nutrient concentrations were observed in surface waters; especially for nitrate (<0,1µM). High concentrations of phosphate (>0,5µM), nitrate (>1µM), ammonium (>2µM) and silicate (>2µM) only prevailed below the thermocline. Chlorophylla values were below 1µg l–1 near the surface. Enhanced values (up to 4µg l–1) were observed in the deeper layer at the transition zone and just below the thermocline at well-stratified locations. At the transition zone high specific C-fixation rates (up to 100 mg C mg–1 chla d–1) at the surface indicated the presence of enhanced productivity. The compensation depth for primary production was found to coincide with a specific C-fixation rate of 5 mg C mg–1 chla d–1. At greater depths, phytoplankton was only found where tidally induced vertical mixing allowed a regular exposure to higher light intensities. Storms resulted in a rapid redistribution of chlorophylla and enhancement of the C-fixation rate in the upper layer of the water column.Publication No. 10 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

8.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

10.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

11.
Vertical distribution, chlorophylla (chla) and phaeopigment concentrations in the gut, and natural nitrogen isotope ratio ( 15N) were investigated for pelagic amphipodsThemisto japonica (Bovallius) collected from the Sea of Japan in July 1987. Differences in diel vertical migration behavior were clearly observed between small and largeT. japonica. Many small (<5 mm body length) amphipods appeared in the phytoplankton-rich shallow layers. Their gut pigment concentrations were higher (mean 0.52 ± 0.15µg chla g–1 amphipod) than those of large amphipods (mean 0.33±0.14µg g–1); this implies that the amphipods fed on a large amount of phytoplankton during the early stage of life. The 15N values of small amphipods were lower (5.7 to 6.3) than those of large amphipods (6.8 to 11.7), reflecting the lower trophic level of small amphipods compared to large ones. The 15N values for small amphipods were similar to those of herbivorous zooplankton. The amphipods' feeding behavior thus changes from herbivorous to carnivorous as they grow.  相似文献   

12.
The marine copepod Calanopia americana Dahl undergoes twilight diel vertical migration (DVM) in the Newport River estuary, North Carolina, USA, in synchrony with the light:dark cycle. Copepods ascend to the surface at sunset, descend to the bottom around midnight, and make a second ascent and descent before sunrise. Behavioral assays with C. americana in the laboratory during fall 2002/2003 and summer 2004 investigated aspects of three hypotheses for the proximate role of light in DVM: (1) preferendum hypothesis (absolute irradiance), (2) rate of change hypothesis (relative rates of irradiance change), and (3) endogenous rhythm hypothesis. Results suggest that C. americana responds to exogenous light cues consistent with its DVM pattern; changes in absolute irradiance evoked swimming responses that would result in an ascent at sunset and descent at sunrise, while relative rates of irradiance decrease at sunset (–0.0046 s–1) evoked an ascent response, and relative rates of irradiance increase at sunrise (0.0042 s–1) evoked a descent response. Furthermore, C. americana expressed an endogenous rhythm in vertical migration that was positively correlated with field observations of twilight DVM. Collectively, these results indicate that both exogenous light cues and endogenous rhythms play a proximate role in twilight DVM of C. americana, providing redundancy in the causes of its vertical migration.Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

14.
Metabolic rates of the ctenophore Beroe ovata within the length range from 0.4 mm (newly hatched larvae) to 60 mm were investigated. At 20° the respiration rates (Q, µg O2 ind.–1 h–1) of individuals with wet weights (W, mg) less than or greater than 100 mg changed according to the equations Q=0.093W0.62 and Q=0.016W0.99, respectively. The weight-specific respiration rate of the juvenile ctenophores with wet body weights of 0.021–100 mg diminished approximately 20-fold (from 0.35 to 0.017 µg O2 mg–1 h–1, respectively), but did not change within the range from 100 to 30,000 mg. The difference in the slope of the regression lines seems to be attributable to the ontogenetic changes in B. ovata metabolism. For the tested temperature range of 10–28°, the mean Q10 coefficient was equal to 2.17±0.5. The basal metabolism of B. ovata narcotised by chloral hydrate was 4.5±0.9 times lower than total metabolism. Such a metabolic range is considered to be characteristic of aquatic invertebrates with high levels of locomotory activity.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
Calanus sinicus is a large calanoid copepod and a dominant species in the coastal waters of Japan. During a research cruise in Sagami Bay on 18 June 1996, we found C. sinicus performing an unusual diel vertical migration (DVM), a behavior that has not been reported in previous studies on this species. This study examined the DVM of C. sinicus under different light environments and revealed the copepods characteristic response to light. Field and laboratory results show that the DVM of C. sinicus is flexible and also confirmed its sensitivity and its rapid response to changing light environments. It is suggested that C. sinicus reacts to changes in absolute light intensity. This feature may be common in oceanic copepod species. The copepods quick reaction to light variation provides decreased predation risks and increased feeding opportunities, which make them a dominant survivor in coastal water habitats.Communicated by T. Ikeda, Hakodate  相似文献   

16.
The surface abundance and species composition of phytoplankton communities were studied in a section across the continental shelf between the Río de La Plata and the oceanic waters of the Subtropical Convergence, during late spring (November 1999). Algal communities were examined using light microscopy and HPLC-derived (high-performance liquid chromatography) pigment concentrations. The CHEMTAX program was used to estimate the chlorophyll a (chl a) biomass of different algal classes. The inclusion of the most abundant members of the chl c pigment family (chl c1, chl c2, chl c3 and chl c2 monogalactosyldiacylglyceride esters) in the pigment matrix improved the CHEMTAX interpretation of field data. Using this novel approach four haptophyte populations were distinguished across the studied section, even though they had qualitatively similar pigment signatures, although one subtype lacked 19-hexanoyloxyfucoxanthin (Hex-Fuco). Five different phytoplankton assemblages, spatially segregated by the prevailing environmental conditions, were distinguished during the studied period. All of them showed a complex community structure, formed by a background of small-sized cells such as cyanobacteria, cryptophytes, haptophytes and prasinophyceans, on which diatom, cryptophyte or some haptophyte blooms were overlapped. In the estuarine assemblage, where maximum chl a concentrations where found, diatoms were always the dominant group (30–60% of total chl a), but cryptophytes (10–40%), prasinophyceans (2–20%) and dinoflagellates (2–12%) were also relevant. In the coastal assemblage diatoms were also the dominant group (35–45%), but haptophytes lacking Hex-Fuco were subdominant (20–35%). The continental shelf assemblage showed an almost exclusive dominance (90%) of haptophytes resembling the coccolithophorid E. huxleyi. Another haptophyte (Phaeocystis sp.) was dominant (75–85%) in the Malvinas Current assemblage. The Brazil Current assemblage was characterized by the codominance of cyanobacteria (45%) and haptophytes (35%). These results are discussed in relationship to the complex hydrographic features of the area.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
During two expeditions of the R.V. Polarstern to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: –22°C, maximum brine salinity: 223, brine volume: 5%) and more moderate conditions in summer (minimum ice temperature: –5.6°C, maximum brine salinity: 94, most brine volumes: 5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a l–1, while chl a concentrations of up to 67.4 µmol l–1 were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms m–2 in summer and between 3.7 and 24.8×103 organisms m–2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

19.
Seasonal population dynamics of Mysis mixta Lilljeborg were studied from December 1998 to November 2000 at a 240 m deep site in Conception Bay, Newfoundland. At this depth, temperature was <0°C and salinity between 32.0 and 34.0 psu year-round. The spring phytoplankton bloom began in early or late March and reached a maximum in late April to mid-May. M. mixta exhibited a highly synchronised life cycle, with spawning and mating occurring in October to November, embryos brooded for ~5 months, and juveniles released during spring bloom sedimentation in April and May. Females were semelparous and died at age 2.5 years, following release of juveniles in spring, whereas the majority of mature males died at age 2 years, following mating in November. The biennial life cycle of this population resulted in the presence of two cohorts in the hyperbenthos at any given time. Variation in density and biomass was low among cohorts but high within cohorts, the latter probably due to the high motility of mysids. Densities in 1999 and 2000 were 242±379 and 544±987 ind. per 100 m3 (mean±SD), respectively. Although growth rates were similar between years, rates measured from changes in dry mass differed both seasonally and among life-history stages (range from –4 to 7 mg month–1). Annual secondary production was estimated at 29–73 mg C m–2 in 1999 and 53–205 mg C m–2 in 2000. The annual P/B ratios were 1.62 and 1.19 in 1999 and 2000, respectively.Communicated by J.P. Grassle, New Brunswick  相似文献   

20.
Feeding dynamics of the Antarctic salps Ihlea racovitzai and Salpa thompsoni were studied in the Lazarev Sea in fall 2004, summer 2005–2006 and winter 2006. Pigment concentrations in the guts of both species were positively correlated with ambient surface chlorophyll a (chl a). No evidence was found for salp clogging even at dense surface concentrations of up to 7 μg chl a L−1. However, gut pigment concentrations had a lower range than ambient pigment concentrations, suggesting that salps increased retention times of ingested material in low-food environments. For medium-sized I. racovitzai and S. thompsoni, estimated individual daily rations reached 7–10 and >100% of body carbon in winter and summer, respectively. Daily respiratory needs of I. racovitzai and S. thompsoni accounted for 28 and 22% of daily carbon assimilation based on pigment ingestion rates in winter, and for 2 and 1% in summer, respectively. The grazing impact of the salp populations on the phytoplankton standing stock was negligible during all seasons due to generally low salp densities. Fatty acid trophic biomarkers in the salps suggest high year-round contributions of flagellates and modest contributions of diatoms to the salp’s diet. These markers showed low seasonal variability for I. racovitzai. The more pronounced seasonality of trophic markers in S. thompsoni were likely related to their generally deeper residence depth in winter linked to a seasonal alternation of sexual and asexual generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号