首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recruitment helps insect societies by bringing individuals to places where work needs to be done, but it also imposes energetic and opportunity costs. The net effect depends both on recruitment efficiency and on the ease with which insects can find work sites on their own. This study examined both of these factors for colony emigration by the ant Temnothorax curvispinosus. Emigrations were organized by a corps of active ants who transported the rest of the colony. These active ants either found new sites independently or followed tandem runs led by successful scouts. Although most tandem runs broke apart before reaching their target, even lost followers found the new site faster than did unguided searchers. When the new site was near the old nest, tandem runs were rare and summoned only a small proportion of the transporter corps. When the new site was instead distant and inconspicuous, tandem runs were common and brought roughly one third of the transporters. This pattern likely results from the quorum rule used by individual scouts to decide when to switch from tandem runs to transports. By monitoring how many nestmates have already found the nest, the ants ensure that the costs of recruitment are born only when necessary.  相似文献   

2.
Shape and efficiency of wood ant foraging networks   总被引:2,自引:1,他引:1  
We measured the shape of the foraging trail networks of 11 colonies of the wood ant Formica aquilonia (Formica rufa group). We characterized these networks in terms of their degree of branching and the angles between branches, as well as in terms of their efficiency. The measured networks were compared with idealized model networks built to optimize one of two components of efficiency, total length (i.e., total amount of trail) and route factor (i.e., average distance between nest and foraging site). The analysis shows that the networks built by the ants obtain a compromise between the two modes of efficiency. These results are largely independent of the size of the network or colony size. The ants’ efficiency is comparable to that of networks built by humans but achieved without the benefit of centralized control.  相似文献   

3.
Summary Colonies of the harvester ant, Pogonomyrmex barbatus, adjust the direction and length of foraging trails in response to the foraging behavior of their conspecific neighbors. In the absence of any interaction with its neighbor, a mature colony expands its foraging range at a rate of 0.85 ± 0.15 m per day. Exclusion experiments show that if a colony is prevented from using its foraging trails, the neighbors of that colony will enter its foraging range within 10 days. Exclusion experiments were performed with three age classes of colonies: young (1 year old), intermediate (3–4 years old), and old (5 years old or more). Colonies 3–4 years old are most likely to expand foraging ranges, and to retain newly-gained areas. To examine the relation of colony age (in years) and colony size (in numbers of workers), colonies of known age were excavated. Colonies increase greatly in size in years 3 and 4. Foraging area may be of greater current or prospective value for younger, smaller, quickly growing colonies than for older, larger ones of stable size. Correspondence to the second address  相似文献   

4.
Serial polygyny, defined as the temporal succession of several reproductive females in a colony, occurs in some monogynous social insects and has so far attracted little attention. Diacamma cyaneiventre is a queenless ponerine ant found in the south of India. Colonies are headed by one singly mated worker, the gamergate. After the death of the gamergate or her absence following colony fission, the gamergate is replaced by a newly eclosed nestmate worker. After a replacement, colonies go through short-lived periods in which two matrilines of sisters co-occur. This is a situation which can be described as serial polygyny. To measure the consequences of serial polygyny, a genetic analysis was performed on 449 workers from 46 colonies of D. cyaneiventre using five microsatellite loci. The presence of more than one matriline among workers of the same nest was detected in 19% of colonies, indicating a recent change of gamergate. The average genetic relatedness among nestmate workers was 0.751 and did not significantly differ from the theoretical expectation under strict monogyny and monandry (0.75). A simple analytical model of the temporal dynamics of serial polygyny was developed in order to interpret these results. We show that the rate of gamergate turnover relative to the rate of worker turnover is the crucial parameter determining the level of serial polygyny and its effect on the genetic structure of colonies. This parameter, estimated from our data, confirms that serial polygyny occurs in D. cyaneiventre but is not strong enough to influence significantly the average genetic relatedness among workers.  相似文献   

5.
In ant societies, workers do not usually reproduce but gain indirect fitness benefits from raising related offspring produced by the queen. One of the preconditions of this worker self-restraint is sufficient fertility of the queen. The queen is, therefore, expected to signal her fertility. In Camponotus floridanus, workers can recognize the presence of a highly fertile queen via her eggs, which are marked with the queen's specific hydrocarbon profile. If information on fertility is encoded in the hydrocarbon profile of eggs, we expect workers to be able to differentiate between eggs from highly and weakly fertile queens. We found that workers discriminate between these eggs solely on the basis of their hydrocarbon profiles which differ both qualitatively and quantitatively. This pattern is further supported by the similarity of the egg profiles of workers and weakly fertile queens and the similar treatment of both kinds of eggs. Profiles of queen eggs correspond to the cuticular hydrocarbon profiles of the respective queens. Changes in the cuticular profiles are associated with the size of the colony the queen originates from and her current egg-laying rate. However, partial correlation analysis indicates that only colony size predicts the cuticular profile. Colony size is a buffered indicator of queen fertility as it is a consequence of queen productivity within a certain period of time, whereas daily egg-laying rate varies due to cyclical oviposition. We conclude that surface hydrocarbons of eggs and the cuticular profiles of queens both signal queen fertility, suggesting a major role of fertility signals in the regulation of reproduction in social insects.  相似文献   

6.
We experimentally investigated both individual and collective behavior of the Argentine ant Linepithema humile as they crossed symmetrical and asymmetrical bifurcations in gallery networks. Ants preferentially followed the branch that deviated the least from their current direction and their probability to perform a U-turn after a bifurcation increased with the turning angle at the bifurcation. At the collective level, colonies were better able to find the shortest path that linked the nest to a food source in a polarized network where bifurcations were symmetrical from one direction and asymmetrical from the other than in a network where all bifurcations were symmetrical. We constructed a model of individual behavior and showed that an individual’s preference for the least deviating path will be amplified via the ants’ mass recruitment mechanism thus explaining the difference found between polarized and non-polarized networks. The foraging efficiency measured in the simulations was three times higher in polarized than in non-polarized networks after only 15 min. We conclude that measures of transport network efficiency must incorporate both the structural properties of the network and the behavior of the network users.  相似文献   

7.
Colonies of the ant Temnothorax albipennis improve their collective performance over successive emigrations (Langridge et al. Behav Ecol Sociobiol 56:523–529, 2004, Behav Ecol Sociobiol 62:447–456, 2008). Here, by analysing the performance of individual transporters (workers that carry the brood, queen and a proportion of adults), we investigate whether they spend less time at the old and new nests during repeated emigrations. Transporters expedited choosing and picking up brood items at the old nest and depositing them in the new nest. Such improvements were not associated with adult transport. Generally, when carrying brood items, but not when carrying adults, transporters visited several locations in the new nest before depositing them. Transporters did not interact with other adults when depositing brood items. Consequently, reductions in depositing times are the sum of time savings made by individual transporters. By contrast, transporters spent most time interacting with other adults before picking up brood items at the old nest. As the frequency of these interactions did not decline, we suggest the behaviours of interacting adults were modified in a way that hastened their completion. Thus, reductions in picking-up times probably occur because of time saved during interactions.  相似文献   

8.
Models based on the kin selection theory predict that in social hymenopterans, queens may favor a lower investment in the production of sexuals than workers. However, in perennial colonies, this conflict may be tuned down by colony-level selection because of the trade off between colony survival and reproductive allocation. In this study, we present a survey of sexual production in colonies of Aphaenogaster senilis, a common species of ant in the Iberian Peninsula. Similar to most species that reproduce by fission, males were found in large excess compared to gynes (172:1). Sexuals were more likely to be found in queenless than in queenright (QR) field colonies. However, we also found a few gynes and numerous males in very large QR colonies. We compared these data with those available in the literature for A. rudis, a congeneric species from North America that has independent colony founding. The sex ratio in this species was only five males for each female, and sexuals were mostly found in QR nests, irrespective of colony size. We confirmed queen inhibition of sexual production in A. senilis in laboratory experiments and provide evidence that this inhibition is mediated by a nonvolatile pheromone. To seek the potential source of such a queen pheromone, we analyzed the secretions of two conspicuous exocrine glands, the Dufour’s and postpharyngeal glands (DG and PPG, respectively) in both queens and workers. Both secretions were composed of hydrocarbons, but that of DG also contained small quantities of tetradecanal and hexadecanal. The hydrocarbon profile of the DG and PPG showed notable caste specificity suggesting a role in caste-related behavior. The PPG secretions also differed between colonies suggesting its role in colony-level recognition. We suggest that in A. senilis, there are two modes of colony fission: First, in very large colonies, gynes are produced, probably because of the dilution of the queen pheromone, and consequently one or more gynes leave the mother colony with workers and brood to found a new nest. This is beneficial at the colony level because it avoids the production of costly sexuals in small colonies. However, because the queen and workers have different optima for sexual production, we hypothesize that queens tend to overproduce the pheromone to delay their production. This in turn may drive workers to leave the mother colony during nest relocation and to produce sexuals once they are away from the queen’s influence, creating a second mode of colony fission.  相似文献   

9.
10.
Intraspecific competition is a pervasive phenomenon with important ecological and evolutionary consequences, yet its effect in natural populations remains controversial. Although numerous studies suggest that in many cases populations across all organisms are limited by density-dependent processes, this conclusion often relies on correlative data. Here, using an experimental approach, we examined the effect of intraspecific competition on population regulation of the ant Aphaenogaster senilis. In this species females are philopatric while males disperse by flying over relatively long distances. All colonies were removed from 15 experimental plots, except for one focal colony in each plot, while 15 other plots remained unmanipulated. After the first reproductive season, nest density in the experimental plots returned to a level nonsignificantly different from that in the control plots, which was not expected if the populations were indeed regulated by density-independent phenomena. In both the control plots and the experimental plots colonies remained overdispersed throughout the experiment, suggesting colony mutual exclusion. Nests outside the plots rapidly extended their foraging span, but we did not detect any significant inward migration into the experimental plots. Experimental reduction in density did not significantly affect the focal colonies' biomass, measured just before the first reproductive season. However, the ratio of males to workers-pupae biomasses was smaller in experimental plots, suggesting that colonies there had redirected part of the resources normally allocated to male production to the production instead of new workers. Microsatellite analysis indicated that, after the reproductive season, many colonies in the experimental plots were headed by a young queen that was the mother of the brood but not of the old workers, indicating that reduction in colony density stimulated fission of the remaining colonies. Finally, at the end of the experiment, 14 months after experimental reduction in density, colonies that derived from fission were smaller in the experimental than in the control plots, suggesting that the former had undergone fission at a smaller size than in control plots, which presumably allowed them to colonize the emptied areas. We conclude that colonies adjust resource allocation and colony fission to the degree of intraspecific competition.  相似文献   

11.
Like organisms, cohesive social groups such as insect colonies grow from a few individuals to large and complex integrated systems. Growth is driven by the interplay between intrinsic growth rates and environmental factors, particularly nutritional input. Ecologically inspired population growth models assume that this relationship remains constant until maturity, but more recent models suggest that it should be less stable at small colony sizes. To test this empirically, we monitored worker population growth and fungal development in the desert leafcutter ant, Acromyrmex versicolor, over the first 6 months of colony development. As a multitrophic, symbiotic system, leafcutter colonies must balance efforts to manage both fungus production and the growth of the ants consuming it. Both ants and fungus populations grew exponentially, but the shape of this relationship transitioned at a size threshold of 89?±?9 workers. Above this size, colony mortality plummeted and colonies shifted from hypometric to hypermetric growth, with a distinct stabilization of the relationship between the worker population and fungus. Our findings suggest that developing colonies undergo key changes in organizational structure and stability as they grow, with a resulting positive transition in efficiency and robustness.  相似文献   

12.
When its nest is damaged, a colony of the ant Leptothorax albipennis skillfully emigrates to the best available new site. We investigated how this ability emerges from the behaviors used by ants to recruit nestmates to potential homes. We found that, in a given emigration, only one-third of the colony's workers ever recruit. At first, they summon fellow recruiters via tandem runs, in which a single follower is physically led all the way to the new site. They later switch to recruiting the passive majority of the colony via transports, in which nestmates are simply carried to the site. After this switch, tandem runs continue sporadically but now run in the opposite direction, leading recruiters back to the old nest. Recruitment accelerates with the start of transport, which proceeds at a rate 3 times greater than that of tandem runs. The recruitment switch is triggered by population increase at the new site, such that ants lead tandem runs when the site is relatively empty, but change to transport once a quorum of nestmates is present. A model shows that the quorum requirement can help a colony choose the best available site, even when few ants have the opportunity to compare sites directly, because recruiters to a given site launch the rapid transport of the bulk of the colony only if enough active ants have been "convinced" of the worth of the site. This exemplifies how insect societies can achieve adaptive colony-level behaviors from the decentralized interactions of relatively poorly informed insects, each combining her own limited direct information with indirect cues about the experience of her nestmates.  相似文献   

13.
Summary The colony founding characteristics of newly mated fire ant queens from monogyne colonies were studied in the field and in the laboratory under haplo- and pleometrotic conditions. Initial queen weight (live) was not correlated with subsequent progeny production. During founding, queens lost a mean of 54% of their lean weight, 73% of their fat weight and 67% of their energy content. The percentage of fat decreased from 44% to 33%. Queens lost weight or energy in relation to the amount of progeny they produced (Figs. 1, 2). The efficiency of the conversion of queen to progeny increased as more progeny were produced, leading to a decline in the unit cost of progeny (Fig. 3). The more minims a queen produced, the lower the mean weight of these minims and the faster they developed (Fig. 4). In a field experiment on pleometrotic founding, total brood increased with queen number, peaked between four and seven queens and declined with 10 queens (Fig. 5). Brood developed faster at the sunny, warmer site, but total production and queen survival was higher at the shady site. As queen density increased, production per queen decreased as a negative exponential in which the exponent estimated sensitivity of brood production to queen-crowding and the constant estimated the production by solo queens (Fig. 9). These effects of queen number were confirmed in laboratory experiments. The decrease of production per queen was small and not always detectable during the egg-laying phase, but brood attrition was always strong during the larval period and increased with queen number (Figs. 8, 10). While airborne factors may have contributed to this inhibition, most of the brood reduction was due to other causes, probably cannibalism. For a given number of minims, increased queen number increased the mean weight of these minims, an effect that resulted both from a lower minim production per queen and from cannibalism of dead queens by survivors (Fig. 11). Cannibal queens lost much less weight to produce a given number of minims than unfed control queens, and these minims were heavier (Fig. 12).  相似文献   

14.
1.  Colonies of Pheidole dentata employ a complex strategy of colony defense against invading fire ants. Their responses can be conveniently divided into the following three phases: (1) at low stimulation, the minor workers recruit nestmates over considerable distances, after which the recruited major workers (soldiers) take over the main role of destroying the intruders; (2) when the fire ants invade in larger numbers, fewer trails are laid, and the Pheidole fight closer to the nest along a shorter perimeter; (3) when the invasion becomes still more intense, the Pheidole abscond with their brood and scatter outward in all directions (Figs. 1, 4).
2.  Recruitment is achieved by a trail pheromone emitted from the poison gland of the sting. Majors can distinguish trail-laying minors that have just contacted fire ants, apparently by transfer of the body odor, and they respond by following the trails with more looping, aggressive runs than is the case in recruitment to sugar water. Majors are superior in fighting to the minors and remain on the battleground longer.
3.  The first phase of defense, involving alarm-recruitment, is evoked most strongly by fire ants and other members of the genus Solenopsis; the presence of a single fire ant worker is often sufficient to produce a massive, prolonged response (Figs. 2, 5, 6). In tests with Solenopsis geminata, it was found that the Pheidole react both to the odor of the body surface and to the venom, provided either of these chemical cues are combined with movement. Fire ants, especially S. geminata, are among the major natural enemies of the Pheidole, and it is of advantage for the Pheidole colonies to strike hard and decisively when the first fire ant scouts are detected. Other ants of a wide array of species tested were mostly neutral or required a large number of workers to induce the response. The alarm-recruitment response is not used when foragers are disturbed by human hands or inanimate objects. When such intrusion results in a direct mechanical disturbance of the nest, simulating the attack of a vertebrate, both minor and major workers swarm out and attack without intervening recruitment.
  相似文献   

15.
We examine the role of food resources on split sex ratios in Formica exsecta. Models of resource-based sex allocation predict that greater resources will cause an increase in the production of reproductive females (gynes) and an increase in overall size of offspring. We experimentally increased food resources for a subset of colonies in a polygynous population with a very male-biased sex ratio. This increase in food availability caused colonies that were male specialists the prior year to switch to female production. Overall, a significantly greater proportion of food-supplemented colonies produced gynes, compared to control colonies. Moreover, food-supplemented colonies produced significantly larger workers and males (but not gynes), compared to those produced by control colonies. There was, however, no significant difference in the numerical productivity of food-supplemented and control colonies. We also measured the natural association between colony sex specialization and proximity to conifers, which typically harbor honeydew-bearing aphids (an important natural food source). In line with the view that resources play an important role for determining sex ratios in social insects, we found that female-producing colonies were significantly closer to conifers than were male-producing colonies.  相似文献   

16.
This study provides the first detailed field account of colony founding, group-raiding and migratory habits in the neotropical termite-hunting ant rPachycondyla marginata, in a semi-deciduous forest in south-east Brazil. New colonies can originate by haplometrosis, pleometrosis, or colony fission. Incipient colonies with multiple foundresses persisted longer in the field, and most excavated nests contained more than one dealated female. A total of 202 group raids by P. marginata were registered, and in all cases the raided termite species was Neocapritermes opacus. Nearly 20% of the workers within a colony engage with raiding activity. Colonies of P. marginata hunt for termites approximately every 2–3 weeks, and group-raids may last for more than 24 h. Target termite nests are up to 38 m from the ant colony, and occasionally two nests are simultaneously raided by one ant colony. Raiding ants carry 1 or 2 paralysed prey, and nearly 1600 termites can be captured during a 9-h raid. Migration by P. marginata colonies lasted over 2 days and covered distances of 2-97 m (n = 48). Average residence time at a given location was 150 days. Three basic migratory patterns were noted: colony fission (only part of the colony moves), long-distance migrations, and short-distance migrations. Both raiding and migratory activities appeared to be strongly affected by seasonal factors. The group raiding and migratory patterns of P. marginata are compared with other ant taxa with similar habits. It is concluded that P. marginata presents a rudimentary form of the so-called army ant behavior, which is highly developed in the subfamilies Dorylinae and Ecitoninae. The extremely specialized diet of P. marginata and the associated high costs of migration are features likely to prevent it from evolving a full army ant life pattern.  相似文献   

17.
Genetic diversity might increase the performance of social groups by improving task efficiency or disease resistance, but direct experimental tests of these hypotheses are rare. We manipulated the level of genetic diversity in colonies of the Argentine ant Linepithema humile, and then recorded the short-term task efficiency of these experimental colonies. The efficiency of low and high genetic diversity colonies did not differ significantly for any of the following tasks: exploring a new territory, foraging, moving to a new nest site, or removing corpses. The tests were powerful enough to detect large effects, but may have failed to detect small differences. Indeed, observed effect sizes were generally small, except for the time to create a trail during nest emigration. In addition, genetic diversity had no statistically significant impact on the number of workers, males and females produced by the colony, but these tests had low power. Higher genetic diversity also did not result in lower variance in task efficiency and productivity. In contrast to genetic diversity, colony size was positively correlated with the efficiency at performing most tasks and with colony productivity. Altogether, these results suggest that genetic diversity does not strongly improve short-term task efficiency in L. humile, but that worker number is a key factor determining the success of this invasive species.Communicated by L. Sundström  相似文献   

18.
Summary Food-sharing experiments were performed with laboratory colonies of Solenopsis invicta containing 1000, 10,000, or 20,000 workers and starved for 0, 3, 7, or 14 days. The effect of these variables was measured on the uptake of radioactive sugar water (1 M) by 1% of the colony's workers and on the trophallactic flow of food from these foragers to the remainder of the colony.Patterns of food distribution in small colonies differed significantly from those in larger nests. In 1000-ant nests, small workers more frequently received food than large workers, but in bigger colonies the opposite occurred.Fire ants were adept at distributing sugar water, with food from a few workers rapidly reaching the majority of the colony as foragers donate their crop contents to groups of recipients and these recipients may themselves act as donors.Foragers respond to colony starvation by individually taking up more food and sharing this fluid with a greater proportion of nestmates. Even foragers from satiated colonies can retrieve at least small amounts of liquid.The forager's state of hunger plays an important role in regulating food distribution. In sugar-satiated nests, previously starved foragers are highly successful at passing on labelled sugar whereas prviously fed foragers are not.  相似文献   

19.
Division of labour during colony emigration is widespread in ants. An important problem is how tasks are allocated during colony movement from one nest site to another. The generally favoured view is that emigrations are organised by a minority group of individuals, which either work unusually hard at tasks (elites) or have the exclusive task of carrying out the emigration (moving specialists). Five consecutive emigrations of a Leptothorax unifasciatus (Latr.) colony showed that the number of transporters, i.e. the individuals that took an active part in the emigration by transporting brood and ants, was smaller than it would have been if allocation of this task was random during each emigration. However, single emigrations of another three colonies, for which the spatial distribution and behaviour of the workers had been observed for a week prior to the emigration, demonstrated that the transporters did not form a homogeneous group. They differed in their spatial positions and tasks before the emigration. There was also no evidence that transporters worked harder or less hard than their nestmates before the emigration. Therefore, the individuals which carry out emigrations in L. unifasciatus colonies appear to be neither moving specialists nor elites. We propose that task allocation during emigrations of L. unifasciatus colonies is based on a feedback mechanism that involves learning.  相似文献   

20.
Summary Two forms of the fire ant, Solenopsis invicta, occur in North America; the monogyne form has colonies with a single functional queen while the polygyne form has colonies containing many functional queens. Field surveys indicate that diploid males are common in natural populations of the polygyne form but absent from monogyne populations, in contrast to laboratory data showing that similar frequencies of queens producing such males occur in the two types of populations. Our results show that mature monogyne colonies with adopted queens rear diploid males in the laboratory, so it is unlikely that the absence of these males from monogyne colonies in the field is due to discrimination against them by monogyne workers. On the other hand, incipient monogyne colonies that produce diploid males exhibit significantly higher mortality and significantly slower rates of growth (Figs. 1–3) than colonies producing workers only. These results suggest that the observed distribution of male diploidy in S. invicta can be explained by differential mortality of diploid male producing colonies of the two forms, with such colonies of the monogyne form experiencing 100% mortality early in development. The mortality differences due to this factor are shown to be related to the different social structures and modes of colony founding characterizing the two forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号