共查询到8条相似文献,搜索用时 0 毫秒
1.
SHELLY LACHISH HAMISH McCALLUM DYDEE MANN CHRISSY E. PUKK MENNA E. JONES 《Conservation biology》2010,24(3):841-851
Abstract: Sustainable strategies to manage infectious diseases in threatened wildlife are still lacking despite considerable concern over the global increase in emerging infectious diseases of wildlife and their potential to drive populations to extinction. Selective culling of infected individuals will often be the most feasible option to control infectious disease in a threatened wildlife host, but has seldom been implemented or evaluated as a management tool for the conservation of threatened species. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by an infectious cancer, devil facial tumor disease (DFTD). We assess the success of an adaptive management trial involving selective culling of infected Tasmanian devils to control DFTD. Demographic and epidemiological parameters indicative of disease progression and impact were compared between the management site and a comparable unmanaged control site. Selective culling of infected individuals neither slowed rate of disease progression nor reduced population‐level impacts of this debilitating disease. Culling mortality simply compensated for disease mortality in this system. Failure of selective culling to impede DFTD progress and reduce its impacts in the managed population was attributed to DFTD's frequency‐dependent nature, its long latent period and high degree of infectivity, and the presence of a cryptic hidden disease reservoir or continual immigration of diseased individuals. We suggest that increasing the current removal rate and focusing removal efforts prior to the breeding season are options worth pursuing for future management of DFTD in this population. On the basis of our experience, we suggest that disease‐management programs for threatened wildlife populations be developed on the principles of adaptive management and utilize a wide variety of strategies with regular reviews and adaptation of strategies undertaken as new information is obtained. 相似文献
2.
Factors Determining the Choice of Hunting and Trading Bushmeat in the Kilombero Valley,Tanzania 总被引:1,自引:0,他引:1
MARTIN REINHARDT NIELSEN JETTE BREDAHL JACOBSEN BO JELLESMARK THORSEN 《Conservation biology》2014,28(2):382-391
Regulation of illegal bushmeat trade is a major conservation challenge in Africa. We investigated what factors are most likely to induce actors in the bushmeat trade to shift to an alternative occupation by conducting a choice experiment with 325 actors in the bushmeat trade in the Kilombero Valley, Tanzania. Specifically, we asked respondents to choose between hunting or trading bushmeat and alternative salary‐paying work, in a set of hypothetical scenarios where the attributes of these alternatives were varied and included measures of command and control, price of substitute meat, daily salary in the work option, and whether or not cows were donated to the respondent. We modeled the choice contingent on socioeconomic characteristics. The magnitude of fines and patrolling frequency had a significant but very low negative effect on the probability of choosing to engage in hunting or trading bushmeat compared with the salary of an alternative occupation. Donation of livestock and the price of substitute meats in the local market both affected the choice significantly in a negative and a positive direction, respectively. The wealthier a household was the more likely the respondent was to choose to continue hunting or trading bushmeat. On the margin, our results suggest that given current conditions in the Kilombero Valley on any given day 90% of the respondents would choose salary work at US$3.37/day over their activities in the bushmeat trade, all else equal. Factores que Determinan la Elección de Cazar y Vender Carne de Caza en el Valle Kilombero, Tanzania 相似文献
3.
BEN C. SCHEELE DAVID A. HUNTER LAURA F. GROGAN LEE BERGER JON E. KOLBY MICHAEL S. MCFADDEN GERRY MARANTELLI LEE F. SKERRATT DON A. DRISCOLL 《Conservation biology》2014,28(5):1195-1205
Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large‐scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease‐free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease‐associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species. Intervenciones para Reducir el Riesgo de Extinción en Anfibios Amenazados por la Quitridiomicosis 相似文献
4.
Using a common commensal bacterium in endangered Takahe as a model to explore pathogen dynamics in isolated wildlife populations 下载免费PDF全文
Brett D. Gartrell Patrick J. Biggs Nicola J. Nelson Jonathan C. Marshall Laryssa Howe Matthew G.M. Balm Nigel P. French 《Conservation biology》2015,29(5):1327-1336
Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could have unpredictable consequences including the spread of novel microbes between isolated populations. 相似文献
5.
Setting population targets for mammals using body mass as a predictor of population persistence 下载免费PDF全文
Jelle P. Hilbers Aafke M. Schipper Cecilia Pinto Carlo Rondinini Mark A.J. Huijbregts 《Conservation biology》2017,31(2):385-393
Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population‐specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species‐specific traits. In our method, we used models of population dynamics across a range of life‐history traits related to species’ body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species‐ and context‐specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context‐specific estimates of population viability for which only limited data are available. It enables a first estimation of species‐specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large‐scale and multispecies conservation assessments and planning. 相似文献
6.
BRADLEY CAIN ANTONY B. WANDERA SUSAN G. SHAWCROSS W. EDWIN HARRIS BARRY STEVENS‐WOOD STEPHEN J. KEMP BENSON OKITA‐OUMA PHILLIP C. WATTS 《Conservation biology》2014,28(2):594-603
A central premise of conservation biology is that small populations suffer reduced viability through loss of genetic diversity and inbreeding. However, there is little evidence that variation in inbreeding impacts individual reproductive success within remnant populations of threatened taxa, largely due to problems associated with obtaining comprehensive pedigree information to estimate inbreeding. In the critically endangered black rhinoceros, a species that experienced severe demographic reductions, we used model selection to identify factors associated with variation in reproductive success (number of offspring). Factors examined as predictors of reproductive success were age, home range size, number of nearby mates, reserve location, and multilocus heterozygosity (a proxy for inbreeding). Multilocus heterozygosity predicted male reproductive success (p< 0.001, explained deviance >58%) and correlated with male home range size (p < 0.01, r2 > 44%). Such effects were not apparent in females, where reproductive success was determined by age (p < 0.01, explained deviance 34%) as females raise calves alone and choose between, rather than compete for, mates. This first report of a 3‐way association between an individual male's heterozygosity, reproductive output, and territory size in a large vertebrate is consistent with an asymmetry in the level of intrasexual competition and highlights the relevance of sex‐biased inbreeding for the management of many conservation‐priority species. Our results contrast with the idea that wild populations of threatened taxa may possess some inherent difference from most nonthreatened populations that necessitates the use of detailed pedigrees to study inbreeding effects. Despite substantial variance in male reproductive success, the increased fitness of more heterozygous males limits the loss of heterozygosity. Understanding how individual differences in genetic diversity mediate the outcome of intrasexual competition will be essential for effective management, particularly in enclosed populations, where individuals have restricted choice about home range location and where the reproductive impact of translocated animals will depend upon the background distribution in individual heterozygosity. Efectos de la Endogamia Sesgada por el Sexo sobre el Éxito Reproductivo y el Rango del Tamaño de Hábitat del Rinoceronte Negro, Especie en Peligro Crítico 相似文献
7.
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation. 相似文献
8.
Ayesha I. T. Tulloch Micha V. Jackson Elisa Bayraktarov Alexander R. Carey Diego F. Correa-Gomez Michael Driessen Ian C. Gynther Mel Hardie Katherine Moseby Liana Joseph Harriet Preece Andrés Felipe Suarez-Castro Stephanie Stuart John C. Z. Woinarski Hugh P. Possingham 《Conservation biology》2023,37(2):e14032
Monitoring is critical to assess management effectiveness, but broadscale systematic assessments of monitoring to evaluate and improve recovery efforts are lacking. We compiled 1808 time series from 71 threatened and near-threatened terrestrial and volant mammal species and subspecies in Australia (48% of all threatened mammal taxa) to compare relative trends of populations subject to different management strategies. We adapted the Living Planet Index to develop the Threatened Species Index for Australian Mammals and track aggregate trends for all sampled threatened mammal populations and for small (<35 g), medium (35–5500 g), and large mammals (>5500 g) from 2000 to 2017. Unmanaged populations (42 taxa) declined by 63% on average; unmanaged small mammals exhibited the greatest declines (96%). Populations of 17 taxa in havens (islands and fenced areas that excluded or eliminated introduced red foxes [Vulpes vulpes] and domestic cats [Felis catus]) increased by 680%. Outside havens, populations undergoing sustained predator baiting initially declined by 75% but subsequently increased to 47% of their abundance in 2000. At sites where predators were not excluded or baited but other actions (e.g., fire management, introduced herbivore control) occurred, populations of small and medium mammals declined faster, but large mammals declined more slowly, than unmanaged populations. Only 13% of taxa had data for both unmanaged and managed populations; index comparisons for this subset showed that taxa with populations increasing inside havens declined outside havens but taxa with populations subject to predator baiting outside havens declined more slowly than populations with no management and then increased, whereas unmanaged populations continued to decline. More comprehensive and improved monitoring (particularly encompassing poorly represented management actions and taxonomic groups like bats and small mammals) is required to understand whether and where management has worked. Improved implementation of management for threats other than predation is critical to recover Australia's threatened mammals. 相似文献