首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.  相似文献   

2.
3.
Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.  相似文献   

4.
We describe Pliodasypus vergelianus gen. et sp. nov., a Dasypodini armadillo from the middle Pliocene of Venezuela (Vergel Member, San Gregorio Formation). Although scarce, the remains are remarkable because of their geochronologic proximity to the main phase of Great American Biotic Interchange (GABI). The cladistic analysis conducted reveals that Pliodasypus groups with Dasypus and both are sister taxa of Propraopus, whereas Anadasypus is at a basal position. With respect to the records of tribe Dasypodini, after its oldest representative (Anadasypus, middle and late Miocene), the chronologically subsequent form is Pl. vergelianus (middle Pliocene), followed by Dasypus bellus in higher northern latitudes (late Pliocene), and then by widespread occurrences in the Pleistocene of North America (D. bellus) and South America (Propraopus, Dasypus punctatus, and Dasypus novemcinctus). Thus, we infer that Dasypus differentiated in the late Pliocene at low latitudes in the northern South America. It leads to two alternative hypotheses of dispersal: (a) some early Dasypus remained cryptically in South America until the Pleistocene, whereas others dispersed to North America between 2.2 and 2.7 Ma, or (b) they dispersed to North America subsequently to the emersion of the Panamanian isthmus and D. bellus differentiated there; later, during the Pleistocene, D. bellus entered South America and experienced speciation. The same process of re-ingression has been proposed to other xenarthrans, breaking with the traditional assumption that the GABI was unidirectional.  相似文献   

5.
Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.  相似文献   

6.
Appearance of the tribosphenic molar in the Late Jurassic (160 Ma) is a crucial innovation for food processing in mammalian evolution. This molar type is characterized by a protocone, a talonid basin and a two-phased chewing cycle, all of which are apomorphic. In this functional study on the teeth of Late Jurassic Dryolestes leiriensis and the living marsupial Monodelphis domestica, we demonstrate that pretribosphenic and tribosphenic molars show fundamental differences of food reduction strategies, representing a shift in dental function during the transition of tribosphenic mammals. By using the Occlusal Fingerprint Analyser (OFA), we simulated the chewing motions of the pretribosphenic Dryolestes that represents an evolutionary precursor condition to such tribosphenic mammals as Monodelphis. Animation of chewing path and detection of collisional contacts between virtual models of teeth suggests that Dryolestes differs from the classical two-phased chewing movement of tribosphenidans, due to the narrowing of the interdental space in cervical (crown–root transition) direction, the inclination angle of the hypoflexid groove, and the unicuspid talonid. The pretribosphenic chewing cycle is equivalent to phase I of the tribosphenic chewing cycle, but the former lacks phase II of the tribosphenic chewing. The new approach can analyze the chewing cycle of the jaw by using polygonal 3D models of tooth surfaces, in a way that is complementary to the electromyography and strain gauge studies of muscle function of living animals. The technique allows alignment and scaling of isolated fossil teeth and utilizes the wear facet orientation and striation of the teeth to reconstruct the chewing path of extinct mammals.  相似文献   

7.
A paleoclimatic hypothesis is presented to account for the evolution and eventual replacement of Homo sapiens neanderthalensis. Neandertal populations in the European Late Pleistocene were largely isolated by geographic barriers. Populations of modern Homo sapiens replaced Neandertals at 34000 years ago, near the end of the relatively cold oxygen isotope stage 3. These population were pushed into Europe by conditions brought on by increasing aridity affecting North Africa and southwestern Asia, and their dispersal was facilitated by lowered sea level.  相似文献   

8.
喀喇昆仑山、西昆仑山及其山前地区的上新统与下更新统之间虽然为整合连续沉积,但两者岩相上存在着巨大差异,由此推论本区强烈隆起的时代为上新世末至第四纪初。早更新世与中更新世之间的构造运动使山前地区的上新统和下更新统发生褶皱变形,并与中更新统呈不整合接触。中更新世山体强烈上升,本区山地发生第一次冰川作用。晚更新世发生两次冰川作用,其规模是晚期小于早期。晚更新世晚期气候强烈干旱化,湖面退缩、大湖解体,一些外流水系变为内流水系,高原植被出现半荒漠—草原—荒漠的演替过程,此时昆仑山北坡黄土发育。  相似文献   

9.
Thailand’s geographical location in the tropics and almost complete, relatively uninterrupted forest cover makes it valuable for paleodiet and paleoclimate research. We present the first dietary and environmental reconstructions in Northeastern Thailand, using stable isotope abundances in mammalian tooth enamel from the late Middle Pleistocene locality, Tham Wiman Nakin (Snake Cave), which reflect a much higher (over 70%) than modern (13%) occurrence of C4 plants. Bovids and cervids appear to have had almost entirely a C4 plant diet. Carnivores consumed a mixture of C3 (suids) and C4 (bovids, cervids) consumers. Rhinoceroses and orangutan appear to have maintained their preference through time for forested or open C3 environment, respectively. 13C/12C from bone bioapatite, horn and hair of modern Southeast Asian mammals almost exclusively demonstrate C3 vegetation dominance. C4 consumption is rare in analysed modern species and it could be related to anthropogenic influences such as ingestion of domestic crops or livestock. Interesting implications emerge in the C4 vegetation distribution in southern Eurasian ecosystems, indicating that Southeast Asia, south of the Tibet, could be part of the global C4 vegetation spread, which occurred around 7 Ma. However, the C4 percentage in ecosystems varied geographically. Despite modern reversal towards C3 habitats due to factors such as increasing CO2, we think that anthropological influences may be responsible for habitat and dietary changes in extant species. Bovids demonstrate the most significant shift in diet and habitat through time, from C4-dominated open habitats to C3-dominated habitats indicative of dense forest understory.  相似文献   

10.
Evidence of diseases on vertebrate fossil bones can provide detailed information on many aspects of extinct animals. This study focused on pathological craniodental remains (left maxilla and dentary) referred to the canid Cuon alpinus unearthed from a Late Pleistocene karst filling deposit at San Sidero (Apulia, southern Italy). These fossils show clear evidence of a chronic periodontitis that caused the animal’s death. Clinical diagnosis of the disease and the timing of its development have been defined on the basis of a veterinary odontostomatology approach, in addition to radiographic and tomographic techniques. From the initiation of the infection until death, a time span of at least 6 months occurred, and three main steps have been defined: (1) the bacterial infections of the buccal cavity turning into severe periodontitis, (2) the fracture of the lower carnassial and (3) the loss of teeth due to the worsening infection that deformed and/or eroded maxillary and mandibular bones and enlarged alveoli. The analysis of the palaeopathology also provides information about the biomechanics of the bite, on the feeding behaviour and on the relationships of injured members in a pack of Late Pleistocene canids.  相似文献   

11.
The Paleocene–Eocene transition is of crucial interest for interpreting the Cenozoic evolutionary radiation of vertebrates. A substantial increase of the number of vertebrate families occurred between the Late Paleocene and Early Eocene, with the appearance of most of the representatives of extant lineages. Basal Eocene marine fish diversity is currently poorly known, exclusively restricted to two assemblages from Denmark and Turkmenistan, respectively. Exceptionally well-preserved articulated skeletal remains of fishes have recently been discovered from a basal Eocene sapropelitic layer exposed along the Kheu River in the Republic of Kabardino-Balkaria, northern Caucasus, Russia. Here, we report on Gerpegezhus paviai gen. et sp. nov., a new peculiar syngnathoid fish from this new Ciscaucasian locality. The morphological structure of the single available specimen suggests that it is the first long-bodied member of the superfamily Centriscoidea, representing the sole member of the new family Gerpegezhidae, which forms a sister pair with the extant family Centriscidae.  相似文献   

12.
松属(Pinus L.)约113种,是松科现代属中最原始的类群。松属植物种类丰富且研究领域广泛,对其已经积累的资料数据进行系统梳理总结十分必要。本文通过总结国内外松属大化石资料,结合分子系统发育、地质背景和地理隔离事件讨论了其地史分布及植物地理学意义;该属化石在早白垩世至全新世地层中均有记录。化石证据表明松属很可能在早白垩世(之前)起源于西欧地区,从这一起源地通过北大西洋陆桥扩散到北美洲东部,而东亚的类群可能是从北美洲西部经过白令陆桥散布的。在晚白垩世分化出双维管束松亚属Subgenus Pinus L.及单维管束松亚属Subgenus Strobus (D.Don) Lemmon,前者更接近祖先类群。古新世由于全球显著增温以及白垩纪末期大灭绝等地质事件的影响使松属数量急剧减少,在晚始新世至中新世时期随着气温转凉转冷再次分化扩散,中新世达到其发展高峰且分布面貌与现代类群近似。松属多样性时空历史可能和新生代气候变迁及晚新生代构造运动塑造的山地隆升等环境变化紧密相关。  相似文献   

13.
Several extinct sperm whales (stem Physeteroidea) were recently proposed to differ markedly in their feeding ecology from the suction-feeding modern sperm whales Kogia and Physeter. Based on cranial, mandibular, and dental morphology, these Miocene forms were tentatively identified as macroraptorial feeders, able to consume proportionally large prey using their massive teeth and robust jaws. However, until now, no corroborating evidence for the use of teeth during predation was available. We report on a new specimen of the stem physeteroid Acrophyseter, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli. Considering their position and outer shape, these are identified as buccal maxillary exostoses. More developed along posterior teeth and in tight contact with the high portion of the dental root outside the bony alveoli, the exostoses are hypothesized to have developed during powerful bites; they may have worked as buttresses, strengthening the teeth when facing intense occlusal forces. These buccal exostoses further support a raptorial feeding technique for Acrophyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus (Brygmophyseter, Livyatan, Zygophyseter). With a wide size range, these Miocene stem physeteroids were major marine macropredators, occupying ecological niches nowadays mostly taken by killer whales.  相似文献   

14.
The presence of salt-excreting glands in extinct marine sauropsids has been long suspected based on skull morphology. Previously, we described for the first time the natural casts of salt-excreting glands in the head of the Jurassic metriorhynchid crocodyliform Geosaurus araucanensis from the Tithonian of the Vaca Muerta Formation in the Neuquén Basin (Argentina). In the present study, salt-excreting glands are identified in three new individuals (adult, a sub-adult and a juvenile) referable to the same species. New material provides significant information on the salt glands form and function and permit integration of evolutionary scenarios proposed on a physiological basis in extant taxa with evidence from the fossil record. G. araucanensis represents an advanced stage of the basic physiological model to marine adaptations in reptiles. G. araucanensis salt glands were hypertrophied. On this basis, it can be hypothesized that these glands had a high excretory capability. This stage implies that G. araucanensis (like extant pelagic reptiles, e.g. cheloniids) could have maintained constant plasma osmolality even when seawater or osmoconforming prey were ingested. A gradual model of marine adaptation in crocodyliforms based on physiology (freshwater to coastal/estuarine to estuarine /marine to pelagic life) is congruent with the phylogeny of crocodyliforms based on skeletal morphology. The fossil record suggests that the stage of marine pelagic adaptation was achieved by the Early Middle Jurassic. Salt gland size in the juvenile suggests that juveniles were, like adults, pelagic.  相似文献   

15.
Herein, we report evidence of an envenomation apparatus (EA) in two different species of extinct “giant” shrews, Beremendia and an indeterminate soricine (Mammalia, Eulipotyphla, Soricidae), documented by very well preserved fossil specimens recovered from two Early Pleistocene cave deposits of the Sierra de Atapuerca in Burgos, Spain. The two soricine taxa from Atapuerca have evolved specialized teeth as EAs, which differ from those of recently reported mammals of the Paleocene age, being more similar to the ones described in the modern Solenodon. This discovery reveals the first instance of shrews possessing what appears to be an EA, an evolutionary adaptation that, in these species, was probably related to an increase in body mass and hunting of a larger-sized prey. The Atapuerca specimens would have a highly specialized EA, one of the very few reported for an extinct or living mammal of any time. In addition to the presence of a gutter-like groove along the medial side of the crown of the lower incisors, these two species also present stout jaws and a modified mandibular symphysis with a conspicuous cavity, which in life would likely contain large amounts of connective tissue. The strong mandible architecture of these large shrews would be, in this way, reinforced by a more immovable symphysis, increasing the bite force exerted over a potential prey. This adaptation, together with the grooved incisors, would ensure a rapid and efficient transmission of the poisonous saliva to paralyze relatively large-sized prey.  相似文献   

16.
Enigmatic avialan remains of Gargantuavis philoinos from the Ibero-Armorican island of the Late Cretaceous European archipelago (Southern France) led to a debate concerning its taxonomic affinities. Here, we show that the bone microstructure of Gargantuavis resembles that of Apteryx, the extinct emeids and Megalapteryx from New Zealand, and indicates that like these slow-growing terrestrial birds, it took several years to attain skeletal maturity. Our findings suggest that the protracted cyclical growth in these ornithurines may have been in response to insular evolution.  相似文献   

17.
We report on the earliest modern mongooses of Africa, from the late Miocene (ca. 7 Ma) of the hominid locality TM 266, Toros-Menalla, Chad. The material is based on fragmentary dentitions of three individuals. The main diagnostic feature of the Chadian species is the great development of the shear in the carnassials, which distinguishes the Chadian specimens from all extant herpestids except Herpestes and Galerella. In comparison with most extinct and extant Herpestes, the species from Toros-Menalla differs by a markedly smaller size and, depending on the species, relatively more elongated carnassials, more transversely elongated M1 and more reduced p4. On the basis of a great morphological similarity and the absence of significant differences, we assign our material to Galerella sanguinea; the Chadian finding therefore represents the earliest appearance of an extant species of Herpestidae. This record ties the first appearance of the genus to a minimum age of ca. 7 Ma, which is consistent with the estimated divergence date of 11.4 Ma known from the literature for the species of Galerella.  相似文献   

18.
The origin of the pygmy right whale (Caperea marginata) has long been one of the most vexing conundrums of marine mammal evolution. The extremely disparate skeletal structure of Caperea and a patchy fossil record have left morphology and molecules at odds: whereas most morphological analyses ally Caperea with right whales (Balaenidae), most molecular studies instead suggest a close relationship with rorquals (Balaenopteridae) and grey whales (Eschrichtiidae). The morphological evidence supporting a Caperea-balaenid clade consists of several shared features of the skull and mandible, as traditionally observed in adult individuals. Here, we show that at least two of these features, the ascending process of the maxilla and the coronoid process, arise from substantially different precursors early during ontogeny and therefore likely do not represent genuine synapomorphies. Both of these juvenile morphologies have adult counterparts in the fossil record, thus indicating that the ontogenetic variation in the living species may be a genuine reflection of differing ancestral states. This new evidence contradicts previous morphological hypotheses on the origins of Caperea and may help to reconcile morphological and molecular evidence.  相似文献   

19.
20.
The frequency of decompression illness was high among the extinct marine “reptiles” and very low among the marine mammals. Signs of decompression illness are still found among turtles but whales and seals are unaffected. In humans, the risk of decompression illness is five times increased in individuals with Patent Foramen Ovale; this condition allows blood shunting from the venous circuit to the systemic circuit. This right-left shunt is characteristic of the “reptile” heart, and it is suggested that this could contribute to the high frequency of decompression illness in the extinct reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号