首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aposematic species advertise their unpalatability to potential predators using conspicuous warning colouration. The initial evolution of aposematism is thought to occur by warningly coloured mutants emerging in an already unpalatable cryptic species. However, possessing defence chemicals is often costly, and it is difficult to understand what the selective benefits might be for a mutation causing its bearer to be defended in a population of otherwise palatable cryptic prey. One solution to this problem is that chemically defended individuals are tasted and rejected by predators, and are, therefore, more likely to survive predatory attacks than undefended individuals. Using naïve domestic chicks Gallus gallus domesticus as predators and cryptic green chick crumbs as prey, we asked whether the accuracy with which birds discriminated between palatable and unpalatable prey was affected by the palatability of the unpalatable prey (moderately or highly defended), or their frequency in the population (10 or 25%). Birds could discriminate between green prey on the basis of their defences, and showed better discrimination between palatable and unpalatable prey when defended crumbs were highly unpalatable, compared to when they were moderately unpalatable. Although there was no detectable effect of the frequency of unpalatable prey in the population on predator taste-rejection behaviour in our main analysis, frequency did appear to affect the strategies that birds used in their foraging decisions when prey were only moderately unpalatable. How birds used taste to reject prey also suggests that birds may be able to monitor and regulate their chemical intake according to the frequency and defence levels of the unpalatable prey. Taken together, these results show that avian predators can generate selection for unpalatability in cryptic prey by sampling and taste-rejecting prey, but that a relatively large chemical difference between palatable and unpalatable prey may be necessary before unpalatable prey can enjoy a selective advantage. The exact nature of this evolutionary dynamic will depend on other environmental factors, such as defence costs and prey availability, but it provides a mechanism by which defences can evolve in a cryptic population.  相似文献   

2.
Snakes are common predators of organisms, such as amphibians, with toxic defenses that can be lethal to other predators. Because snakes do not have the option of dissecting prey into edible versus inedible components, they face a full dose of any chemical defenses encountered during attempted predation. This limitation has likely resulted in intense selection favoring the evolution of alternative mechanisms for dealing with prey toxins. These mechanisms can be physiological (e.g., resistance to prey toxins) or behavioral (e.g., toxin sampling and rejection). When physiological resistance arises, the possibility of bioaccumulation of a toxin results. We examined the coevolutionary interaction between the common garter snake (Thamnophis sirtalis) and the rough-skinned newt (Taricha granulosa), which contains a powerful neurotoxin called tetrodotoxin (TTX). In some populations syntopic with newts, individuals of T. sirtalis have evolved resistance to TTX. We examined the persistence of TTX in T. sirtalis after administration of an oral dose of TTX to investigate the possibility that snakes are sequestering TTX. The half-life of TTX in snake liver was estimated at 8.1?days. Accordingly, clearance of 99% of a single dose of TTX averages 61?days. Negative fitness consequences of intoxication during and after newt consumption may be balanced by co-opting the newts?? chemical defense for protection from the snakes?? own predators. Accounting of the coevolutionary dynamic between snakes and newts must incorporate post-consumption affects of lingering TTX.  相似文献   

3.
Although predators affect prey both via consumption and by changing prey migration behavior, the interplay between these two effects is rarely incorporated into spatial models of predator-prey dynamics and competition among prey. We develop a model where generalist predators have consumptive effects (i.e., altering the likelihood of local prey extinction) as well as nonconsumptive effects (altering the likelihood of colonization) on spatially separated prey populations (metapopulations). We then extend this model to explore the effects of predators on competition among prey. We find that generalist predators can promote persistence of prey metapopulations by promoting prey colonization, but predators can also hasten system-wide extinction by either increasing local extinction or reducing prey migration. By altering rates of prey migration, predators in one location can exert remote control over prey dynamics in another location via predator-mediated changes in prey flux. Thus, the effect of predators may extend well beyond the proportion of patches they visit. In the context of prey metacommunities, predator-mediated shifts in prey migration and mortality can shift the competition-colonization trade-off among competing prey, leading to changes in the prey community as well as changes in the susceptibility of prey species to habitat loss. Consequently, native prey communities may be susceptible to invasion not only by exotic prey species that experience reduced amounts of mortality from resident predators, but also by exotic prey species that exhibit strong dispersal in response to generalist native predators. Ultimately, our work suggests that the consumptive and nonconsumptive effects of generalist predators may have strong, yet potentially cryptic, effects on competing prey capable of mediating coexistence, fostering invasion, and interacting with anthropogenic habitat alteration.  相似文献   

4.
Batesian mimicry evolves when a palatable species, the “mimic,” resembles a dangerous species, the “model,” because both receive protection from predation. Yet, this protection should break down where the model is absent, because predators in such areas would not be under selection to avoid the model. Here, we test this prediction in a coral snake mimicry complex. We exposed plasticine replicas of milk snakes that closely mimic coral snakes to natural predators to determine if good mimetic milk snakes are preferentially attacked in allopatry with their model. Moreover, we evaluated whether attack rates on these replicas varied among three different allopatric regions that differed in the type of mimic found locally (i.e., good mimic, poor mimic, or no mimic). When all three regions were considered together, mimics were not preferentially attacked. When regions were analyzed separately, however, attacks on mimics were significantly greater than randomness only where good mimics were found. These variable levels of predation on good mimics might reflect frequency-dependent (i.e., apostatic) predation. In allopatric regions where good mimics are present, predators might have learned or evolved preferences for conspicuous, palatable prey that they encounter frequently. By contrast, in allopatric regions where good mimics are absent, predators might not have learned or evolved preferences for novel phenotypes. Thus, when predation is frequency-dependent, as long as good mimics are rare, they might not experience elevated levels of predation in allopatry with their model as predicted by the Batesian mimicry hypothesis.  相似文献   

5.
Interactions between foragers may seriously affect individual foraging efficiency. In a laboratory study of handling time, prey value and prey-size preference in northern pike and signal crayfish, we show that risk of intraspecific interactions between predators does not affect handling time or value of prey. However, the presence of agonistic intraspecific interactors shifts prey-size preference in these predators. Neither northern pike nor signal crayfish foraging alone show a prey-size preference, while pike foraging among conspecifics prefer small prey, and crayfish foraging in groups prefer large prey. We ascribe the different outcomes in prey preference to differences in susceptibility to interactions: northern pike under risk avoid large prey to avoid long handling times and the associated risk of interactions, while signal crayfish foraging among conspecifics may defend themselves and their prey during handling, and thus select prey to maximise investment. In addition, the value of pike prey (roach) is low for very small prey, maximises for small prey, and then decreases monotonically for larger prey, while crayfish prey (pond snail) value is low for very small prey, has a maximum at small prey, but does not decrease as much for larger prey. Therefore, a large and easily detected snail prey provides a crayfish with as much value as a small prey. We conclude that interaction risk and predator density affect prey-size preference differently in these aquatic predators, and therefore has different potential effects on prey-size structure and population and community dynamics. Received: 4 October 1999 / Revised: 20 March 2000 / Accepted: 27 May 2000  相似文献   

6.
Commonly used functional response models (Holling’s type I and type II models) assume that the encounter rate of a predator increases linearly with prey density, provided that the predator is searching for prey. In other other words, aN (a is the baseline encounter rate and N is prey density) describes the encounter rate. This study examined whether the models are adequate when predators and prey interact locally by using a spatially explicit individual based model because local interactions affect the spatial distribution of predators and prey, which also affects the encounter rate. Predators were assumed to possess a spatial perception range that influenced their foraging behavior (e.g., if a prey is in the perception range, the predator moves towards the prey). The effect of antipredator behavior by prey was also examined. The results suggest that prey and predator densities as well as handling time affect the baseline rate (i.e., parameter a) as opposed to the common assumption that the parameter is constant. The nature of model deviations depended on both the antipredator behavior and the predators’ perception range. Understanding these deviations is important as they qualitatively affect community dynamics.  相似文献   

7.
Summary This paper describes the influence on predator behaviour, and the survival of an aposematic aphid, Aphis nerii, in comparison with a palatable, cryptic aphid, Acyrthosiphon pisum, when offered to two predators with different foraging tactics. The experiments were designed to test Fisher's (1930) suggestion that aposematism could evolve by kin selection, since aposematic animals often occur in aggregations of relatives. Initially, spiders (Zygiella x-notata) and birds (Parus major) killed high proportions of distasteful A. nerii (60% and 54% respectively). With experience, the predators killed and ate fewer A. nerii. The decreasing mortality of A. nerii after initial encounters with predators, coupled with its apparently obligate parthenogenesis, indicate that the evolution of aposematism in this soft-bodied insect is consistent with kin selection.  相似文献   

8.
Aposematic (warning) signals of prey help predators to recognize the defended distasteful or poisonous prey that should be avoided. The evolution of aposematism in the context of predation has been in the center of modern ecology for a long time. But, the possible roles of aposematic signals in other ecological contexts have been largely ignored. Here we address the role of aposematic signals in competition between prey and predators. Bumblebees use visual and auditory aposematic signals to warn predators about their defenses. For 2 years, we observed competition for nestboxes between chemically defended insects, Bombus ardens (and possibly also Bombus ignitus), and cavity nesting birds (Parus minor and Poecile varius). Bumblebees settled in 16 and 9 % of nestboxes (in 2010 and 2011 breeding seasons, respectively) that contained bird nests at the advanced stage of nest building or at the stage of egg laying. Presence of bumblebees prevented the birds from continuing the breeding activities in the nestboxes, while insects took over the birds’ nests (a form of kleptoparasitism). Playback experiments showed that the warning buzz by bumblebees contributed to the success in ousting the birds from their nests. This demonstrates that aposematic signals may be beneficial also in the context of resource competition.  相似文献   

9.
Johnson DW 《Ecology》2006,87(5):1179-1188
Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether increased habitat complexity leads to an increase or a decrease in the strength of density-dependent mortality may depend on how specific predatory responses (e.g., functional or aggregative) are altered by habitat complexity. Overall, the findings of this study suggest that rates of demographic density dependence and the resulting dynamics of local populations may largely depend upon attributes of the local habitat.  相似文献   

10.
Hein AM  Gillooly JF 《Ecology》2011,92(3):549-555
Ecological theory suggests that both dispersal limitation and resource limitation can exert strong effects on community assembly. However, empirical studies of community assembly have focused almost exclusively on communities with a single trophic level. Thus, little is known about the combined effects of dispersal and resource limitation on assembly of communities with multiple trophic levels. We performed a landscape-scale experiment using spatially arranged mesocosms to study effects of dispersal and resource limitation on the assembly dynamics of aquatic invertebrate communities with two trophic levels. We found that interplay between dispersal and resource limitation regulated the assembly of predator and prey trophic levels in these pond communities. Early in assembly, predators and prey were strongly dispersal limited, and resource (i.e., prey) availability did not influence predator colonization. Later in assembly, after predators colonized, resource limitation was the strongest driver of predator abundance, and dispersal limitation played a negligible role. Thus, habitat isolation affected predators directly by reducing predator colonization rate, and indirectly through the effect of distance on prey availability. Dispersal and resource limitation of predators resulted in a transient period in which predators were absent or rare in isolated habitats. This period may be important for understanding population dynamics of vulnerable prey species. Our findings demonstrate that dispersal and resource limitation can jointly regulate assembly dynamics in multi-trophic systems. They also highlight the need to develop a temporal picture of the assembly process in multi-trophic communities because the availability and spatial distribution of limiting resources (i.e., prey) and the distribution of predators can shift radically over time.  相似文献   

11.
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.  相似文献   

12.
Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.  相似文献   

13.
Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.  相似文献   

14.
Abstract: Wildlife‐exclusion fencing and wildlife‐crossing structures (e.g., underpasses and overpasses) are becoming increasingly common features of highway projects around the world. The prey‐trap hypothesis posits that predators exploit crossing structures to detect and capture prey. The hypothesis predicts that predation events occur closer to a highway after the construction of fences and crossing structures and that prey species’ use of crossings increases the probability that predators will attack prey. We examined interactions between ungulates and large carnivores at 28 wildlife crossing structures along 45 km of the Trans‐Canada Highway in Banff National Park, Alberta. We obtained long‐term records of locations where ungulates were killed (kill sites) before and after crossing structures were built. We also placed remote, motion‐triggered cameras at two crossing structures to monitor predator behavior following ungulate passage through the structure. The proximity of ungulate kill sites to the highway was similar before and after construction of fencing and crossing structures. We found only five kill sites near crossing structures after more than 32,000 visits over 13 years. We found no evidence that predator behavior at crossing structures is affected by prey movement. Our results suggest that interactions between large mammals and their prey at wildlife‐crossing structures in Banff National Park are not explained by the prey‐trap hypothesis.  相似文献   

15.
Organisms in natural habitats participate in complex ecological interactions that include competition, predation, and foraging. Under natural aquatic environmental conditions, amphibian larvae can simultaneously receive multiple signals from conspecifics, predators, and prey, implying that predator-induced morphological defenses can occur in prey and that prey-induced offensive morphological traits may develop in predators. Although multiple adaptive plasticity, such as inducible defenses and inducible offensive traits, can be expected to have not only ecological but also evolutionary implications, few empirical studies report on species having such plasticity. The broad-headed larval morph of Hynobius retardatus, which is induced by crowding with heterospecific anuran (Rana pirica) larvae, is a representative example of prey-induced polyphenism. The morph is one of two distinct morphs that have been identified in this species; the other is the typical morph. In this paper, we report that typical larval morphs of Hynobius can respond rapidly to a predatory environment and show conspicuous predator-induced plasticity of larval tail depth, but that broad-headed morphs cannot respond similarly to a predation threat. Our findings support the hypothesis that induction or maintenance of adaptive plasticity (e.g., predator-induced polyphenism) trades off against other adaptive plastic responses (e.g., prey-induced polyphenism). For a species to retain both an ability to forage for larger prey and an ability to more effectively resist predation makes sense in light of the range of environments that many salamander larvae experience in nature. Our results suggest that the salamander larvae clearly discriminate between cues from prey and those from predators and accurately respond to each cue; that is, they adjust their phenotype to the current environment.  相似文献   

16.
Scyphomedusae are ubiquitous in marine and estuarine systems, where they frequently play an important role in trophodynamics. Many scyphomedusae are cruising predators, and feeding rates depend, in part, on swimming behavior. Yet, no model of medusa swimming exists. An individual-based correlated random walk (CRW) model of medusa swimming behavior in three dimensions was developed. The model was validated using a previously published dataset of the swimming of 19 Chrysaora quinquecirrha (Desor, 1848) medusae that were observed in the presence or absence of zooplankton prey in laboratory mesocosms in August–October 1998 (Matanoski et al. in Mar Biol 139:191–200, 2001). In the presence of prey, medusae swam at a constant moderate rate in looping trajectories. In the absence of prey, medusae alternated periods of slow and fast swimming in more linear trajectories. In the model, looping trajectories were reproduced only when changes in movement by a medusa were oriented to its current position and orientation; more linear trajectories were reproduced by movement oriented to a fixed framework. This suggests that medusae change from swimming behavior oriented to local stimuli (e.g., contact with prey) to long-range stimuli (e.g., gravity) depending on the availability of prey. The model reproduced cyclical changes in swimming speeds by medusae in the absence of prey by simulating switching in the behavior controlling the strength of swimming bell pulsations using a probabilistic function. Model results also demonstrated that medusae tend to swim toward the surface, avoid contact with the bottom, increase time spent in prey patches if they alter swimming patterns in the presence of prey, and exhibit significant periodicities in swimming patterns that are the result of deterministic behavior. The model will permit the simulation of the complex behavior of medusae.  相似文献   

17.
Creel S 《Ecology》2011,92(12):2190-2195
Risk effects, or the costs of antipredator behavior, can comprise a large proportion of the total effect of predators on their prey. While empirical studies are accumulating to demonstrate the importance of risk effects, there is no general theory that predicts the relative importance of risk effects and direct predation. Working toward this general theory, it has been shown that functional traits of predators (e.g., hunting modes) help to predict the importance of risk effects for ecosystem function. Here, I note that attributes of the predator, the prey, and the environment are all important in determining the strength of antipredator responses, and I develop hypotheses for the ways that prey functional traits might influence the magnitude of risk effects. In particular, I consider the following attributes of prey: group size and dilution of direct predation risk, the degree of foraging specialization, body mass, and the degree to which direct predation is additive vs. compensatory. Strong tests of these hypotheses will require continued development of methods to identify and quantify the fitness costs of antipredator responses in wild populations.  相似文献   

18.
Where prey arriving in a patch are not consumed immediately, they will accumulate. Predators are then presented with a prey density or standing crop that increases through further input, and decreases through the consumption by predators. Firstly, I show that the switching rule of predators has a significant influence on the expected predator equilibrium distribution in such a dynamic system. Three rules are compared; for all rules, analytical solutions are calculated (where possible). To test their plausibility for natural situations, predator distributions are simulated given the assumption that each predator obtains individual patch profitability estimates by using a common learning rule. As long as prey arrive in the patches in constant numbers per time unit, the first rule leads to input matching because predators stop switching when consumption in the two patches is equal. The other two rules, where predators continue to sample both patches even in the equilibrium state, lead to predator distributions where the more profitable patch is underused. The final equilibrium depends on the exact assumptions of the switching rule; however, it is independent of interference. But if the input delivered into a patch is a function of the current prey standing crop (for example in a reproducing prey population), predator and prey distributions will not reach an equilibrium in most cases: either standing crops increase indefinitely, or they approach zero, with all predators concentrating on the better patch. Only a small number of parameter sets show intermediate crops that are reasonably stable. With this input type, only up to 54% of the simulations reach the expected distribution. In a system with competition for dynamic standing crop, it is therefore essential to know the type of input and the switching-rule used by predators to be able to predict equilibrium predator distributions. Received: 17 March 1995/Accepted after revision: 5 November 1995  相似文献   

19.
The cognitive processes of predators play a central role in the evolution of prey characters. Numerous studies have shown that vertebrate predators may learn to associate the characteristics of prey (e.g. color) with the cost or benefit of ingesting them, thus forming preferences and aversions for different kinds of prey. Although the distribution and quality of prey types can differ between environmental contexts, which may make it profitable to attack a prey type in some contexts but not in others, the influence of environmental cues in decisions to attack has rarely been addressed. Recent theory suggests that modification of prey preferences by environmental cues such as microhabitat or temperature may influence the evolution of prey characteristics. Here, we show that the environmental foraging context may determine prey choice in great tits (Parus major) through learned association between the prey phenotype (appearance and palatability) and a contextual background cue. The same individuals were able to learn and maintain two different sets of food preferences and aversions for use in two different environmental contexts (aviaries with red or blue wooden boards), indicating a role for contextual learning in vertebrate foraging behavior.  相似文献   

20.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号