首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigated the effect of inoculation of Pleurotus tuber-regium, a Nigerian white rot fungus, period of incubation, different levels of contamination on cutting fluids degradation in contaminated soil over 30, 60, and 90 days. Control for different levels of cutting fluids was also used to compare rates of bioremediation of the contaminant in the soil. At the end of each incubation period, the mycelia-ramified substrate was separated from the soil layer and dried. The soil samples were analyzed for physico-chemical parameters; total petroleum hydrocarbon, lignin content by determining the acid detergent fraction (ADF), heavy metals content of the soil using flame atomic absorption spectrophotometer, and changes in the polyphenol oxidase and peroxidase activities were also determined after 1, 2, and 3 months. P. tuber-regium improved the nutrient status of the soil and increased enzyme activity was recorded. A reduction in the pH and heavy metal contents of the soil at all levels of cutting fluids concentrations was detected. The lignin in the rice straw decreased from 34.50% in the control to 8.06% at 30% cutting fluids concentration after 3 months of incubation. The highest TPH loss of 30.84% was recorded at 20% cutting fluids contamination after 3 months compared to 13.75% at the onset of the experiment. The improvement of the nutrient contents of the soil, bioaccumulation of heavy metals, degradation of TPH, lignin, and increased activity of polyphenol oxidase and peroxidase was due to biodegradation of the cutting fluids.  相似文献   

2.
The cultivation of white rot edible fungus Pleurotus florida was performed in polybags. The corn cob was employed as basal substrate while eight different additives such as urea, ammonium sulphate, gram flour, soybean meal, ground nut cake and molasses were used with corn cob. Three different levels of variable combinations with corn cob were evaluated in response to different parameters of mushroom viz., mycelial growth, spawn running, primordial initiation, fruit body yield and its biological efficiency. Each additive at different combinations showed variable impact on the different stages of mushroom life cycle. The primordial initiation was observed for the first time during 20.2–35.1 days. The biological efficiencies in every supplemented set were increased over un-supplemented control set. Increasing the level of additives, the biological efficiency was negatively affected at higher levels. The cotton seed cake was found the best supplement producing 93.75% biological efficiency while soybean meal was the second best additive producing 93.00% yield. The highest growth rate, rapid mycelia run, early primordial initiation, highest yield and biological efficiency were recorded in the combination of corn cob and cotton seed cake at 2% (98 + 2) level.  相似文献   

3.
The fungus Pleurotus ostreatus NRRL-2366 degraded 56.7% and 45.9% of untreated and chemically pretreated (delignified) sugarcane bagasse, respectively, during 14-day incubation in a submerged fermentation process. The biodegradation percentages of cellulose, hemicellulose and lignin were 33.0%, 72.5% and 14.5%, respectively. An increment of 22.6% of crude protein content in the residual fermented material was observed. Chemical composition of the end-product and its amino acids profile were reported.  相似文献   

4.
Surfactant soil washing can remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil, and the white rot fungus, Phanerochaete chrysosporium Burdsall in Burdsall & Eslyn, can oxidize PAHs. The objective of this study was to develop a novel bioremediation technology using a combination of abiological surfactant soil washing followed by PAH biological oxidation in soil washwater using P. chrysosporium in a rotating biological contactor (RBC) reactor. Soil used for experimentation was an 11-month aged contaminated soil spiked with a total of nine PAHs: acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo(a)pyrene, dibenz(a-h)anthracene, and benzo(ghi)perylene. After 11 months of aging, recovery percentages of high molecular weight PAHs [i.e., from chrysene to benzo(ghi)perylene] were greater than 86%, while those of low molecular weight PAHs (i.e., from acenaphthene to pyrene) were less than 19%. Total removal efficiency for any of the nine PAHs was greater than 90% using a combination of surfactant soil washing and P. chrysosporium oxidation of soil washwater in the RBC reactor when used in batch operation, and greater than 76% when used in continuous operation. The treatment of PAH-contaminated soil using a combination of surfactant soil washing and subsequent PAH removal from the resultant washwater in an RBC reactor, in the presence of immobilized P. chrysosporium, permits (i) a rapid abiological cleanup of soil for compliance with relevant soil quality standards and (ii) PAH biological removal in soil washwater for compliance with aqueous discharge standards.  相似文献   

5.
The objective of this research was to determine the spatial distributions of childhood lead poisoning and soil lead contamination in urban Tijuana. The Bocco–Sanchez model of point-source emissions was evaluated in terms of validity and reliability. We compared the model's predicted vulnerable populations with observed cases of childhood lead poisoning in Tijuana, identified fixed point sources in the field, and analyzed 76 soil samples from 14 sites. The soil lead results were compared to the blood lead analyses performed on Tijuana children whose blood lead levels were ≥10 μg/dL, who reported that they did not use lead-glazed ceramics for cooking or storing food (n = 63). Using GIS, predicted vs observed risk areas were assessed by examining spatial patterns, including the distribution of cases per designated risk area. Chi-square analysis of expected vs observed values did not differ significantly at the p = 0.02 level, showing that the model was strikingly accurate in predicting the distribution of subjects with elevated blood lead. Results reveal that while point sources are significant, other sources of lead exposure are also important. The relative public health risk from exposure to lead in an urban setting may be assessed by distinguishing among sources of exposure and associating concentrations to blood lead levels. The results represent an iterative approach in environmental health research by linking environmental and human biomarker lead concentrations and using these results to validate an environmental model of risk to lead exposure.  相似文献   

6.
朱建军  曾抗美 《四川环境》2006,25(6):86-90,100
本文针对染料废水处理中存在的问题,介绍了利用白腐真菌处理废水的一般机理及其优势。在此基础上。对该菌种在处理染料废水研究应用中的筛选与降解机理、主要工艺条件对处理效果的影响和反应器类型等方面的研究成果给予了分析与评述。  相似文献   

7.
A variety of anthropogenic sources release hazardous polyaromatic hydrocarbons (PAHs) into the phyllosphere which is an excellent niche for diverse fungi, and some of them have PAHs degradation capabilities. Therefore, this research attempted to determine the PAHs (phenanthrene, anthracene, naphthalene, and pyrene) degradation capability of phyllosphere inhabited Penicillium species. The leaf samples were collected from highly polluted urban areas (Panchikawatta, Pettah, Orugodawatta, Maradana, Sapugaskanda, and Colombo Fort) in Sri Lanka to isolate fungal species inhabiting the phyllosphere. Furthermore, their distribution patterns among the leaf tissue layers were studied using bright-field microscopic observations. Moreover, the best PAH degraders were screened out using plate assays and confirmed through High Performance Liquid Chromatography (HPLC) analysis. Further, their enzymatic activities during the PAHs degradation were analyzed. As per the microscopic observations, the highest fungal distribution was in the upper epidermis of the leaves followed by the fungal distribution in the interspaces of palisade mesophyll layers. Out of isolated fungal species, two Penicillium spp. (Penicillium citrinum P23B-91 and Penicillium griseofulvum P9B - 30) showed the highest PAHs (phenanthrene, anthracene, naphthalene, and pyrene) degradation capabilities. Manganese peroxidase (MnP) enzyme dominated phenanthrene degradation in P. griseofulvum P9B - 30, which showed the highest phenanthrene degradation ability (61%). In addition, P. citrinum P23B-91 was good at degrading anthracene (88%) and also displayed a higher MnP activity during the anthracene degradation than laccase and lignin peroxidase activities. The discoveries from the toxicity assay during the PAHs degradation processes revealed that the produced byproducts had no toxic effects on the fungal growth cycle and the phyllosphere. Therefore this phyllosphere Penicillium spp. are ideal for the bioremediation of polluted air in urbanized areas.  相似文献   

8.
The anaerobic digestion of industrial wastes produces a biogas that is an alternative to the use of fossil fuels for energy production. At the end of this process, the stabilized biomass presents high levels of nutrients, which can be used both as biofertilizers in agriculture and for the biodegradation of contaminants in the soil through improvement of the microbiota. Thus, this study aimed to evaluate biogas production by industrial wastes and to use the biofertilizer for the bioremediation of soils previously contaminated with gasoline. The biomass (420 mL) generated approximately 10 liters (L) of methane and 3 L of other gases. Anaerobic incubation reduced total and volatile solids, as well as biochemical oxygen demand, chemical oxygen demand, and the carbon and nitrogen contents of the biomass. The bioremediation experiment showed that 15 days after contamination with gasoline, the addition of the biofertilizer improved the degradation efficiency of monoaromatic hydrocarbons; however, the degradation of polyaromatic hydrocarbons was less time efficient. So, we conclude that the anaerobic incubation of industrial wastes generates a high amount of biogas, and that biofertilizer deposition into contaminated soil does not affect the efficiency of the degradation of aromatic hydrocarbons after 30 days. Novelty or significance : Anaerobic incubation of industrial wastes generates a high calorific value gas, which can be used as an alternative source of energy. And, the resulting biomass, called biofertilizer, can be used to remediate soils contaminated with hydrocarbons.  相似文献   

9.
Recycling of municipal wastewater requires treatment with flocculants, such as polyacrylamide. It is unknown how polyacrylamide in sludge affects removal of polycyclic aromatic hydrocarbons (PAH) from soil. An alkaline-saline soil and an agricultural soil were contaminated with phenanthrene and anthracene. Sludge with or without polyacrylamide was added while emission of CO2 and concentrations of NH4+, NO3, NO2, phenanthrene and anthracene were monitored in an aerobic incubation experiment. Polyacrylamide in the sludge had no effect on the production of CO2, but it reduced the concentration of NH4+, increased the concentration of NO3 in the Acolman soil and NO2 in the Texcoco soil, and increased N mineralization compared to the soil amended with sludge without polyacrylamide. After 112 d, polyacrylamide accelerated the removal of anthracene from both soils and that of phenanthrene in the Acolman soil. It was found that polyacrylamide accelerated removal of phenanthrene and anthracene from soil.  相似文献   

10.
The photosensitizing perylenequinone toxin elsinochrome A (EA) is produced in culture by the bindweed biocontrol fungus Stagonospora convolvuli LA39 where it apparently plays a pathogenicity related role. We investigated the fate of EA with reference to its stability under different temperature and light conditions. EA remained stable when boiled in water at 100C for 2 h. Similarly, exposing EA to 3–27C in the dark for up to 16 weeks did not affect its stability either in dry or in aqueous form. However, results from irradiation experiments indicate that direct photolysis may be a significant degradation pathway for EA in the environment. EA either in dry form or dissolved in water was degraded by different irradiation wavelengths and intensities, with degradation plots fitting a first order rate kinetics. EA degraded faster if exposed in aqueous form, and at higher quantum flux density (μmol s−1 m−2). Sunlight was more effective in degrading EA than artificial white light and ultraviolet radiations (UV-A or UV-B). Exposing EA to natural sunlight, particularly, during the intense sunshine (1,420– 1,640 μmol s−1 m−2) days of 30 July to 5 August 2004 in Zurich caused the substance to degrade rapidly with half-life under such condition only 14 h. This implies that should EA gets into the environment, particularly on exposed environmental niches, such as on plant surfaces through biocontrol product spray, or released from shed diseased leaves, it may have no chance of accumulating to ‘level of concern’. Furthermore, a toxicity assay using Trichoderma atroviride P1 as biosensor showed that photo-degraded EA was not toxic, indicating that no stable toxic by-products were left.  相似文献   

11.
This study investigated the soil nematode community structure along the Yellow River in the Lanzhou area of China, and analyzed the impact of heavy metals (Cd, Pb, Cr, Cu, and Zn) and polycyclic aromatic hydrocarbons (PAHs) on the nematode community. Soil samples from five locations (named A–E), which were chosen for soil analysis, showed significant differences in their heavy metal content (p < 0.01), as well as in the variety of nematodes (up to 41 genera) and families (up to 20) that were present. The different samples also differed significantly in the total PAH content (p < 0.05), as well as the six types of PAH present. Sites A–C showed the most severe contamination with heavy metals and PAHs; these sites had the lowest abundance of fungivores and omnivore/predators, but the proportion of bacteriovores was the highest (p < 0.05). Site E, in contrast, showed only minor pollution with heavy metals and PAHs, and it contained the highest abundance of plant parasites (p < 0.05). Several nematode ecological indicators were found to correlate with concentration of soil pollutants at all the sites tested: the maturity index (MI, in addition to plant parasites), plant parasite index (PPI), ΣMI (including all the soil nematodes), Shannon-Wiener diversity index (H′′), and Wasilewska index (WI). Disturbance to the soil environment was more severe when MI, ΣMI, and H′ values were lower. The results of the study show that the abundance and structure of the soil nematode communities in the sampling locations were strongly influenced by levels of heavy metals and PAHs in the soil. They also show that the diversity index H′ and the maturity index can be valuable tools for assessing the impact of pollutants on nematodes.  相似文献   

12.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   

13.
The chrome (Cr) is a metal utilized in various industrial sectors and its investigation in the environment is necessary, for the Cr (III) contain aessential micronutrients in the human nourishment and the Cr (VI), on the other hand, is toxic. In the present work soil contamination with Cr was realized in drainagelysimetersset in concentrations of 0, 200, 400, 600, 800 and 1000 mg kg−1 of total Cr, with the intuition to determine the total Cr and Cr (VI) flux in leached water, in soil and in plants of lettuce (Lactuca sativa L.). In the lysimeters were cultivated four plants, in three cultivation circles. In the end of the cultivations was observed, that the total applied Cr leached in the soil, evidencing the Cr mobility in latossoil with simulant characteristics to the ones utilized in this paper. The Cr (VI) concentrations in the soil increased soon after the treatment applications, but tend to decrees in the time elapse, the same tendences were observed for the total Cr concentrations in the leached water. The Cr absorption by plants was related to the Cr disponibility in the soil, for the soil concentration and the plants decreased with time passing. The Cr mobility in the soil possibilitated the groundwater contamination presenting risks to the water quality and, consequently to public health.  相似文献   

14.
Mineralization of atrazine and formation of extractable and non-extractable "bound" residues were followed under laboratory conditions in two contrasting soils (organic C, texture, and atrazine application history) from northern Spain. The soils, a Humic Cambisol (MP) and a Gleyic Cambisol (G) were incubated with labeled atrazine (ring-13C atrazine) at field application dose and measurements were made at different time intervals during 3 mo. Fate and behavior of atrazine along the incubation showed different patterns between the two soils, the time taken for degradation of 50% (DT50) being 9 and 44 d for MP and G soils, respectively. In MP soil, with 40 yr of atrazine application and lower organic C and clay content, more than 89% of U-13C-atrazine added was mineralized after 12 wk, with most mineralization occurring within the first 2 wk. G soil, with 10 yr of atrazine application, exhibited a more progressive U-13C-atrazine mineralization, reaching 54% of initially added atrazine at 12 wk. Hydroxyatrazine and deisopropylatrazine were the metabolites founded in the extractable fraction, demonstrating that both chemical and biological processes are involved in atrazine degradation. Soil G showed during all the incubation times an extractable residues fraction greater than that in MP soil, indicating a high potential risk of soil and water contamination. Rapid microbial degradation through s-triazine ring cleavage was proposed to be the main decomposition pathway of atrazine for the two soils studied. Bound residues pool also differed notably between soils accounting for 9 and 41% of initially added atrazine, the higher values shown by soil with higher organic matter and clay content (G soil).  相似文献   

15.
针对油井附近落地油污染地表土壤的问题,利用热蒸发色谱技术,对油污土壤中加入微生物对原油的降解特征进行了实验研究。实验结果表明,在油污土壤中加入微生物,对落地油有明显的降解作用,可以减轻石油生产过程中油污对土壤的破坏和对环境的污染。随着微生物降解作用的不断进行,土壤中污油的相对降解速度逐渐加快,相对降解率逐渐增加。生物处理法的过程较简单,处理费用低,处理效果好,一般不会产生二次污染。  相似文献   

16.
Observations on above ground litter decomposition and nutrient release in alpine ecosystem of the Himalaya were carried out. Monthly variation was observed for above ground litter crop and it was higher in the protected sites (PR) when compared with unprotected sites (UNPR). Turnover rate (TR) and time (TT) was also higher in PR sites and it corresponded to maximum net accumulation of standing dead and litter biomass. This resulted into low litter disappearance and therefore, low nutrient fluxes as well. Comparatively, potassium content was a maximum followed by N and OC in above ground crop of litter with significant variation among the sites (P < 0.001 and 0.005, respectively). It was observed that only 9–12% litter of various categories was decomposed annually at the rate of 0.1–0.13%. Overall, decomposition process was a maximum during active growth season and only 13.2–16.2% of total litter was decomposed during the winter months (December–March). Release of OC and NPK to soil organic matter through the decomposition of various litter types was also observed and the pattern of release was similar to that of disappearance channel. All these parameters are reported and possible reasons are described in the present paper.  相似文献   

17.
Nine New Zealand native white-rot fungi were studied for their ability to grow and survive on different substrates formulated from bark, wheat straw, sawdust, apple pomace and maize products in order to identify their pentachlorophenol (PCP) biodegradation potential and to select a fungal carrier for bioaugmentation of polluted soils. Isolates were also evaluated to mineralize (14)C-PCP in liquid culture and in soil. The American fungus Phanerochaete chrysosporium outgrew the native fungi on the substrates tested, but the high colonisation did not result in superior PCP dechlorination as measured by chloride release. Whilst Trametes versicolor inocula produced on wheat straw and SCS (sawdust-corn meal-starch-mix) gave the highest chloride release, colonization of these two substrates as measured by biological potential was lower compared to the pomace and pomace-sawdust-mix. Neither lignin peroxidase nor manganese peroxidase production were measured for New Zealand white-rot fungi during the experiments. Laccase was the only enzyme detected. In liquid culture, the mineralisation rate was higher for T. versicolor isolates compared to P. chyrysoporium. Very little to no pentachloroanisole (PCA) was captured in the volatile fraction of T. versicolor isolates, whereas 75% of the volatile fraction of P. chrysosporium consisted of PCA. The soil microcosms studies, using contaminated soil from a timber treatment site, clearly showed that the New Zealand T. versicolor isolates mineralized PCP. Degradation of PCP in non-sterile soil was higher in the presence of white-rot fungi than in soil without white-rot fungus. This demonstrates that viable white-rot fungus is necessary for significant PCP degradation and that T. versicolor isolates showed PCP remediation potential. Wheat straw and SCS could be suitable carriers for New Zealand native T. versicolor isolates for bioremediation of PCP polluted soil sites.  相似文献   

18.
The potential of the epigeic earthworm Eisenia fetida to stabilize sludge␣(generated from a distillation unit of the sugar industry) mixed with cow dung, in different proportions i.e. 20% (T1), 40% (T2), 60% (T3) and 80% (T4) has been studied under laboratory conditions for 90 days. The␣ready vermicompost was evaluated for its’ different physico-chemical parameters using standard methods. At the end of experiment, all vermibeds expressed a significant decrease in pH (7.8–19.2%) organic C (8.5–25.8%) content, and an increase in total N (130.4–170.7%), available P (22.2–120.8%), exchangeable K (104.9–159.5%), exchangeable Ca (49.1–118.1%), and exchangeable Mg (13.6–51.2%) content. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of distillery sludge. DTPA extractable metal reduction in substrate was recorded between the ranges of 12.5–38.8% for Zn, 5.9–30.4% for Fe, 4.7–38.2% for Mn and 4.5–42.1% for Cu. Maximum values for the mean individual live weight (809.69 ± 20.09 mg) and maximum individual growth rate (mg wt. worm−1 day−1) (5.81 ± 0.18) of earthworms was noted in T1 treatment, whereas cocoon numbers (69.0 ± 7.94) and individual reproduction rate (cocoon worm−1 day−1) (0.046 ± 0.002) was highest in T2 treatment. Earthworm mortality tended to increase with increasing proportion of distillery sludge, and maximum mortality in E. fetida was recorded for the T4 (45.0 ± 5.0) treatment. Results indicate that vermicomposting might be useful for managing the energy and nutrient rich distillery sludge on a low-input basis. Products of this process can be used for sustainable land restoration practices. The feasibility of worms to mitigate the toxicity of metals also reduces the possibility of soil contamination, which has been reported in earlier studies during direct field application of industrial wastes.  相似文献   

19.
This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.  相似文献   

20.
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0–20 and 30–50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0–20 cm; and Cr, Ni, Cu, Cd, and Zn at 30–50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号