首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new method for quantifying spatio-temporal O2 distribution and dynamics at biologically active surfaces with a complex surface topography. Magnetized O2 optode microparticles (~80–100?μm) containing the NIR-emitting luminophore platinum (II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF; ex. max. 615?nm; em. max. 780?nm) were distributed across the surface tissue of the scleractinian coral Caulastrea furcata and were held in place with a strong magnet. The O2-dependent luminescence of the particles was mapped with a lifetime imaging system enabling measurements of the lateral surface heterogeneity of the O2 microenvironment across coral polyps exposed to flow. Mapping steady-state O2 concentrations under constant light and O2 dynamics during experimental light–dark shifts enabled us to identify zones of different photosynthetic activities within a single coral polyp linked to the distribution of coral host pigments. Measurements under increasing irradiance showed typical saturation curves of O2 concentration and estimates of gross photosynthesis that could be spatially resolved at ~100?μm pixel resolution. The new method for O2 imaging with magnetized optode particles has much potential to be used in studies of the surface microenvironment of other aquatic systems such as sediments, biofilms, plant, and animal tissue.  相似文献   

2.
The temperate seagrass Zostera marina L. typically grows in highly reducing sediments. Photosynthesis-mediated O2 supplied to below-ground tissues sustains aerobic respiration during photosynthetic periods. Roots, however, experience daily periods of anoxia and/or hypoxia at night and under conditions that reduce photosynthesis. Rhizosphere cores of Z. marina were collected in August 1984 from Great Harbor, Massachusetts, USA. We examined short-term anaerobic metabolism of [U-14C]sucrose in excised roots and roots of intact plants. Under anaerobic conditions roots showed appreciable labeling of CO2, ethanol and lactate, and slight labeling of alanine and other metabolites. Over 95% of the 14C-ethanol was recovered in the root exudate. Release of other metabolites from the roots was minimal. Ethanol was also released from hypoxic/anoxic roots of intact plants and none of this ethanol was transported to the shoot under any experimental conditions. Loss of ethanol from roots prevented tissue levels of this phytotoxin from increasing during anaerobiosis despite increased synthesis of ethanol. Anaerobic metabolism of [U-14C]glutamate in excised roots led to appreciable labelling of -aminobutyrate, which was known to accumulate in eelgrass roots. Roots recovered to fully aerobic metabolism within 4 h after re-establishment of aerobic conditions. The contributions of these root metabolic responses to the ability of Z. marina to grow in reducing marine sediments are related to light-regulated interactions of shoots and roots that likely dictate depth penetration, distribution and ecological success of eelgrass.  相似文献   

3.
In coastal waters and estuaries, seagrass meadows are often subject to light deprivation over short time scales (days to weeks) in response to increased turbidity from anthropogenic disturbances. Seagrasses may exhibit negative physiological responses to light deprivation and suffer stress, or tolerate such stresses through photo-adaptation of physiological processes allowing more efficient use of low light. Pulse Amplitude Modulated (PAM) fluorometery has been used to rapidly assess changes in photosynthetic responses along in situ gradients in light. In this study, however, light is experimentally manipulated in the field to examine the photosynthesis of Halophila ovalis and Zostera capricorni. We aimed to evaluate the tolerance of these seagrasses to short-term light reductions. The seagrasses were subject to four light treatments, 0, 5, 60, and 90% shading, for a period of 14 days. In both species, as shading increased the photosynthetic variables significantly (P < 0.05) decreased by up to 40% for maximum electron transport rates (ETRmax) and 70% for saturating irradiances (Ek). Photosynthetic efficiencies (α) and effective quantum yields (ΔF/Fm′) increased significantly (P < 0.05), in both species, for 90% shaded plants compared with 0% shaded plants. H. ovalis was more sensitive to 90% shading than Z. capricorni, showing greater reductions in ETRmax, indicative of a reduced photosynthetic capacity. An increase in Ek, Fm′ and ΔF/Fm′ for H. ovalis and Z. capricorni under 90% shading suggested an increase in photochemical efficiency and a more efficient use of low-photon flux, consistent with photo-acclimation to shading. Similar responses were found along a depth gradient from 0 to10 m, where depth related changes in ETRmax and Ek in H. ovalis implied a strong difference of irradiance history between depths of 0 and 5–10 m. The results suggest that H. ovalis is more vulnerable to light deprivation than Z. capricorni and that H. ovalis, at depths of 5–10 m, would be more vulnerable to light deprivation than intertidal populations. Both species showed a strong degree of photo-adaptation to light manipulation that may enable them to tolerate and adapt to short-term reductions in light. These consistent responses to changes in light suggest that photosynthetic variables can be used to rapidly assess the status of seagrasses when subjected to sudden and prolonged periods of reduced light.  相似文献   

4.
R. J. Orth 《Marine Biology》1977,44(2):187-194
The addition of two commerical fertilizers, one 5% NH4NO3, 10% P2O5, 10% K2O, and the other 10% NH4NO3, 10% P2O5, 10% K2O, ahd a dramatic effect on the growth of Zostera marina in the Chesapeake Bay. There was a significant increase in the length, biomass and total number of turions of fertilized plots compared with controls during a 2 to 3 month period. Data from this short-term field experiment suggest that Z. marina beds in the Chesapeake Bay are nutrient-limited, that the grwoth form of Z. marina may be related to the sediment nutrient supply, and that Z. marina may competitively exclude Ruppia maritima by light-shading.  相似文献   

5.
The hydrothermal vent crab Bythograea thermydron Williams (Brachyura: Bythograeidae) is exposed to high environmental concentrations of hydrogen sulphide. Hydrogen sulphide has previously been shown to be oxidized to a non-toxic form, thiosulphate (S2O3 2-), that accumulates in the hemolymph (to concentrations>1 mmoll-1). Hemocyanin-oxygen (Hc-O2) affinity was determined in dialysed, fresh or frozen hemolymph samples from B. thermydron. Although freezing is known to alter the affinity or cooperativity of some decapod crustacean hemocyanins, neither Hc-O2 affinity nor cooperativity was significantly altered in B. thermydron hemolymph samples that had been frozen, consistent with previous findings. Oxygen affinity of B. thermydron hemocyanin was significantly increased by the presence of L-lactate. Likewise, Hc-O2 affinity was significantly increased by the presence of 1.5 mmol S2O3 2- I-1. The magnitude of this effect was the same as for similar concentrations of L-lactate. This specific effect of S2O3 2- does not appear to be a general property of crustacean hemocyanins, as there was no significant effect of S2O3 2- on Hc-O2 affinity or cooperativity in dialysed hemolymph samples from the brachyuran crabs Cancer anthonyi Rathbun and C. antennarius Stimpson, or the thalassinid ghost shrimp Callianassa californiensis Dana. In the context of high environmental sulphide concentrations coupled with low PO 2, and the subsequent accumulation of S2O3 2- in crab hemolymph, the increase in Hc-O2 affinity due to thiosulphate appears to be an adaptive response in B. thermydron.  相似文献   

6.
Fe3O4 was supported on mesoporous Al2O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe3O4/Al2O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and para-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe3O4 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of Al2O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe3O4/Al2O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.  相似文献   

7.
Oxygen consumption rates of the deep-sea fish Sebastolobus altivelis were measured in situ on pelagic juveniles at mesopelagic depths (608 m) and on demersal adults at bathyal depths (1 300 m) in the Santa Catalina Basin in March 1982. Two pelagic juveniles were individually collected, and respiration was measured continuously for approximately 2 d with a slurp gun respirometer manipulated from the submersible “Alvin”. Oxygen consumption rates of these juveniles were highly variable and were 1.5 to 1.8 times higher during the night than during the day. Gut contents of the juveniles were mainly euphausiids (Euphausia pacifica and Nematoscelis difficilis). Four demersal adults were collected by “Alvin” and individually placed in fish-trap respirometers on the bottom where respiration was measured continuously for approximately 1 d. Weight-specific O2 consumption rates for adults decreased with increasing body weight and were consistent in magnitude throughout the incubation period. Population O2 consumption for demersal S. altivelis (calculated from abundance, size-frequency distribution, and O2 consumption regression equation) was 11.01 μl O2 m-2 h-1, which is two orders of magnitude less than the O2 consumption rate for the population of the most abundant epibenthic megafaunal species in the Santa Catalina Basin, the ophiuroid Ophiophthalmus normani. O. normani is a principal prey for adults of S. altivelis based on gutcontent analysis. Given the population O2 consumption rate as an estimate of food energy demand, the demersal population of S. altivelis would assimilate only 0.007% of the standing crop of O. normani per day.  相似文献   

8.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

9.
Metabolism of two abundant echinoderm species constituting 99.6% of the epibenthic megafauna in the Santa Catalina Basin, off southern California, USA was measured at 1 300 m during the 1979 “Bathyal Expedition”. Specimens of the ophiuroid Ophiophthalmus normani and the holothurian Scotoplanes globosa, collected by the submersible “Alvin”, were individually placed in respirometers, and measured in situ for O2 consumption and ammonium excretion rates. For O. normani, weight-specific O2 consumption rates decreased with increasing weight and were of comparable magnitude to rates of deep-sea and shallow-water ophiuroids; excretion rates were highly variable. Population O2 consumption and excretion rates for O. normani (estimated from size-frequency distribution, abundance, and rate regression equations) were 1 129.28 μl O2 m-2 h-1 and 27.30 nmol NH 4 + m-2 h-1. Weight-specific O2 consumption and ammonium excretion rates of S. globosa decreased with increasing weight and were of comparable magnitude to rases of shallow-water holothurians. Population O2 constimption and excretion rates of S. globosa were 1.38 μl O2 m-2 h-1 and 4.86 nmol NH 4 + m-2 h-1. Combined population O2 consumption rates for O. normani and S. globosa are of comparable magnitude to that of the sediment community and plankton in the benthic boundary layer (sediment and overlying 50 m water column) of the Santa Catalina Basin.  相似文献   

10.
The burrowing decapod Nephrops norvegicus (L.) was kept under various degrees of hypoxia in order to measure respiration, heart rate, scaphognathite rate, haemolymph oxygen content and pH. An emergence reaction to hypoxia occurred only in dim light (<10-2 m-c) or darkness, but after 10 d of moderate hypoxia the decapods showed no emergence response at all. The weight specific respiration of quiescent individuals was relatively low and increased only slightly in hypoxia (PwO2=40 torr). Heart rate, about 50 beats min-1, changed little during hypoxia, down to PwO2=40 torr, whereas scaphognathite rates rose from about 60 beats min-1 at normoxia to peak at 120 beats min-1 at PwO2=40 torr. The oxygen extraction efficiency (E) remained at 20 to 30% during the first hour of hypoxia then rose gradually to maximum values of 30 to 40%. A small respiratory alkalosis of the blood became evident only after 4h of hypoxia (PwO2=50 torr). Normoxic postbranchial O2 tensions (PaO2) were low (25–30 torr) and showed only a small decline during hypoxia. Over 10 to 13 d in moderate hypoxia an effective biosynthesis of 0.024 mM haemocyanin individual-1 d-1 occurred in fed decapods, whereas controls (normoxic) showed no significant change in pigment levels. A linear relationship between oxygen carrying capacity and haemocyanin concentration was found. It is contended that N. norvegicus is better able to cope with periodic exposure to hypoxia when food of sufficient quantity and quality is available.  相似文献   

11.
Mesopelagic fish were collected from a cruise with the R.V. “Dr. Fridtjof Nansen” to the northern Red Sea and the interior Gulf of Aden off the Republic of Djibouti in March 1981. Off the Republic of Djibouti five species of mesopelagic fishes were caught and in the Red Sea six species. Benthosema pterotum (Alcock) were dominant in both areas. In the Red Sea Maurolicus muelleri (Gmelin) were also abundant. The mesopelagic fish caught in the Red Sea showed a pattern of vertical migration similar to that observed in other areas, in spite of the special hydrographical regime. The number of gill rakers of B. pterotum caught in the Red Sea differed significantly from that of all other populations studied. The number of photophores of M. muelleri apparently do not differ much from other populations. B. pterotum from the Red Sea mature at a larger size than other populations, while M. muelleri mature at a smaller size. The relative fecundity of M. muelleri is higher in the Red Sea than in other regions studied, while no significant difference was observed in B. pterotum. Both species appear to be opportunistic feeders. Their feeding chronology in the Red Sea seems to be similar to those observed in other areas.  相似文献   

12.
Seagrasses are threatened by multiple anthropogenic stressors, such as accumulating drift algae and increasing temperatures (associated with eutrophication and global warming, respectively). However, few seagrass experiments have examined whether exposure to multiple stressors causes antagonistic, additive, or synergistic effects, and this has limited our ability to predict the future health status of seagrass beds. We conducted a laboratory experiment to test whether abundance of Gracilaria comosa (3 levels; 0, 1.2, and 3.4 kg WW m−2), an algae that is resistant to wide environmental fluctuations (e.g. light, temperature, salinity, and oxygen levels), has negative effects on the small ephemeral seagrass, Halophila ovalis and whether the effects are exacerbated by high temperature (3 levels; 20, 25, and 30°C). We found an additive negative effect of the two stressors when tested simultaneously on 14 seagrass performance measures, with most data variability explained by the drift algae. For the individual plant performance measures (above- and below-ground growth and mortality, leaf area, internode distance, and root length and root volume), we found 5 additive effects, 4 synergistic effects, and 5 effects that were significant only for drift algae. We also documented a significant additive effect of drift algae and temperature on dissolved porewater sulphide (DS). A follow-up correlation analysis between DS and the 14 plant performance measures revealed significant or near-significant linear correlations on 9 of these responses (above- and below-ground growth, leaf area and weight, leaf mortality, and internode distance). In summary, we showed (a) that a stress-resistant drift algae can have strong negative effects on a small ephemeral seagrass, (b) this negative effect can increase both additively and synergistically with increasing temperature depending on performance measure, and (c) the negative effects may be mediated by a build-up of porewater DS. An implication of our findings is that resource managers aiming to preserve healthy seagrass beds in an almost certain future warmer world should increase efforts to keep drift algae populations low.  相似文献   

13.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

14.
Intertidal macroalgae may spend a significant part of their lives in air. During photosynthesis in air, they encounter much lower concentrations of inorganic carbon than in seawater. Because they accumulate inorganic carbon from seawater, we investigated whether they similarly accumulate it from air. We measured photosynthesis in the intertidal species Fucus vesiculosus L. during 1990 and 1991 with a gas-phase O2 electrode or CO2-exchange apparatus in air and with a liquid-phase O2 electrode in seawater. Maximum rates were rapid and similar in air and seawater regardless of the method. Tissue from seawater could carry on photosynthesis in CO2-free air, indicating that carbon was stored in the tissue. After 2 h, this store was depleted and photosynthesis ceased. Supplying CO2 in air replenished the store. Under identical conditions, terrestrial C3 and C4 species showed no evidence of this store, but a CAM (crassulacean acid metabolism) species did. However, in contrast to the CAM behavior, F. vesiculosus did not store CO2 significantly in the dark. We found a small acid-releasable pool of carbon in the tissue that disappeared as photosynthesis depleted the carbon store. However, the pool was too small to account for the total carbon stored. While CO2 was being acquired or released from the store in the light, photosynthesis was not inhibited by 21% O2. These results indicate that there are two parallel paths for the supply of CO2 to photosynthesis. The first depends on inorganic carbon in seawater or in air and supports rapid photosynthesis. The second involves CO2 slowly released from an organic intermediate. The release protects CO2 fixation from the inhibitory effects of 21% O2. Photosynthesis in F. vesiculosus thus appears to be C3-like in its rapid fixation of CO2 from a small inorganic pool into phosphoglycerate. However, it is C4-like in its pre-fixation of carbon in an organic pool in the light, and is CAM-like in its ability to slowly use this pool as a sole source of CO2. The organic pool may serve to protect photosynthetic CO2 fixation against the inhibitory effects of O2 in air and in the boundary layer in seawater. Received: 6 March 1998 / Accepted: 16 October 1998  相似文献   

15.
Laboratory experiments were conducted to investigate the survival rate of Monoporeia affinis in sulphide-rich sediment with oxic overlying water, and the effect of amphipod bioturbation on sulphide and oxygen profiles. As long as the oxygen content in the water is high, the amphipods seem to avoid quite high concentrations (>200 μmol l−1) of sulphide in the sediment by creating microhabitats where sulphide is rapidly oxidised. In cores with amphipods, a decrease of sulphide concentration was found in upper layers, while an increase of sulphide was found in deeper layers. Aggregation of amphipods generated pockets of light-brown sediment, characterised by high oxygen concentrations and no sulphide, and their depth was clearly dependent on amphipod density. This indicates that M. affinis has a potential to recolonise sulphide-rich sediments, devoid of macroscopic life, after the overlying water column has become oxygenated. Received: 13 April 2000 / Accepted: 8 September 2000  相似文献   

16.
Variations in tissue carbon (C), nitrogen (N) content, and non-structural carbohydrate (NSC) reserves in the turtle grass Thalassia testudinum Banks ex König were examined in relation to changes in sediment-N availability in Corpus Christi Bay (CCB) and lower Laguna Madre (LLM), Texas, USA, from May to October 1997. Under natural conditions, sediment pore-water NH+ 4-concentrations were higher at CCB (100?μM) than at LLM (30?μM); this difference was reflected in a significantly higher leaf and rhizome N-content at CCB than at LLM. However, sediment NH+ 4-enrichment using a commercial fertilizer resulted in significantly higher tissue N-content relative to controls at both sites. N enrichment also influenced plant carbon metabolism, as reflected by distinct increases in leaf C-content at both sites. Significant decreases in rhizome NSC-content was recorded during the first two months of the experiment, suggesting that C was reallocated from rhizomes to leaves to support stimulated leaf growth at both sites. At LLM, leaf growth-rates increased and leaf turnover-time decreased as a result of sediment NH+ 4-enrichment. With respect to chlorophyll, concentrations did not change significantly at CCB, but increased steadily at LLM after the first month following fertilization. In general however, chlorophyll concentrations in control plots were significantly higher at CCB than that at LLM. These observations suggest that leaf function related to C-fixation is enhanced under higher sediment N conditions, as reflected in higher leaf growth-rates and increased blade chlorophyll-content. In contrast, under low-N conditions, below-ground tissue production is enhanced at the expense of the above-ground shoots and leaves, resulting in the high below: above-ground biomass ratios often observed in seagrass beds of oligotrophic environments.  相似文献   

17.
Surface O3 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NO x -VOC-sensitivity regimes complicates the control-decision making. In this paper, the indicator method was used to establish the relationship between O3 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NO y , H2O2/ HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z , were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO x -sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H2O2/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were able to identify more than 95% of VOC- and NO x -sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NO z were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.
  相似文献   

18.
Hematite (Fe2O3) chemical reduction into FeO and Fe3O4 by releasing O2 at high temperatures is considered one of the generally accepted mechanisms for processing waste minerals and clay into lightweight aggregate construction materials. In many case studies, this mechanism has not been strictly confirmed. To verify whether hematite can effectively release O2 at 1,000–1,260°C, a material containing hematite, simulating waste sediments from a Taiwanese reservoir, was shaped into pellets and fired into lightweight aggregates at high temperatures for 20 min and studied with various techniques. As revealed by the X-ray absorption near-edge structure technique, almost all the hematite remained as Fe(III) in the pellets when fired at 1,000–1,260°C, implying a negligible release of O2 leading to the creation of pores. This finding shows that the generally accepted mechanism for lightweight aggregate formation associated with hematite decomposition into FeO, Fe3O4, and O2 is invalid. Furthermore, Fe(III)-containing composites were formed in the fired pellets. Although firing at 1,000°C can trigger the decomposition of the components K2CO3, Na2CO3, and CaCO3 with a release of CO2, the sintering reaction was seemingly too weak to encapsulate the gases effectively. For pellets fired at 1,050–1,150°C, pores grew in size because the sintering reaction sufficed to generate a glassy phase that could better encapsulate gases.  相似文献   

19.
This study aims to identify effective antialgal allelochemicals from marine macroalgae that inhibit the growth of red tide microalgae. Practically, new algicidal agents were developed to control red tide. The growth inhibitory effects of 5 marine macroalgae Porphyra tenera, Laminaria japonica, Ulva pertusa, Enteromorpha clathrata, and Undaria pinnatifida on Skeletonema costatum were evaluated by adding crude seawater extracts of macroalgal dry tissue into the culture medium containing S. costatum. The half-effective concentrations at 120 h (EC50, 120 h) of the seawater extracts were 0.6, 0.9, 1.0, 1.0, and 4.7 g/L for the five macroalgae above, respectively. E. clathrata, L. japonica and U. pertusa showed strong allelopathic effect on the growth of S. costatum. There have been no previous reports with regard to the allelopathic effects of the former two macroalgae so far. The possible allelochemicals of 21 compounds of the E. clathrata were detected using Gas chromatography-mass spectrometry (GC-MS) analysis. Unsaturated fatty acids, acrylic acid (C3H4O2), and linolenic acid (C18H30O2) were the most likely allelochemicals in E. clathrata.  相似文献   

20.
Some of the mechanisms involved in inorganic carbon (Ci) acquisition by tropical seagrasses from the western Indian Ocean were described by Björk et al. (Mar Biol 129:363–366, 1997). However, since then, it has been found that an additional, buffer-sensitive, system of Ci utilisation may operate in some temperate seagrasses (Hellblom et al. in Aquat Bot 69:55–62, 2001, Hellblom and Axelsson in Photos Res 77:173–191, 2003); this buffer sensitivity indicates a mechanism in which electrogenic H+ extrusion may form acidic diffusion boundary layers, in which either HCO 3 ? –H+ is co-transported into the cells, or where HCO 3 ? is converted to CO2 (as catalysed by carbonic anhydrase) prior to uptake of the latter Ci form. Because a buffer was used in the 1997 study, we found it important to reinvestigate those same eight species, taking into account the direct effect of buffers on this potential mode of Ci acquisition in these plants. In doing so, it was found that all seagrass species investigated except Cymodocea serrulata were sensitive to 50 mM TRIS buffer of the same pH as the natural seawater in which they grew (pH 8.0). Especially sensitive were Halophila ovalis, Halodule wrightii and Cymodocea rotundata, which grow high up in the intertidal zone (only ca. 50–65% of the net photosynthetic activity remained after the buffer additions), followed by the submerged Enhalus acoroides and Syringodium isoetifolium (ca. 75% activity remaining), while Thalassia hemprichii and Thalassodendron ciliatum, which grow in-between the two zones, were less sensitive to buffer additions (ca. 80–85% activity remaining). In addition to buffer sensitivity, all species were also sensitive to acetazolamide (AZ, an inhibitor of extracellular carbonic anhydrase activity) such that ca. 45–80% (but 90% for H. ovalis) of the net photosynthetic activity remained after adding this inhibitor. Raising the pH to 8.8 (in the presence of AZ) drastically reduced net photosynthetic rates (0–14% remaining in all species); it is assumed that this reduction in rates was due to the decreased CO2 concentration at the higher pH. These results indicate that part of the 1997 results for the same species were due to a buffer effect on net photosynthesis. Based on the present results, it is concluded that (1) photosynthetic Ci acquisition in six of the eight investigated species is based on carbonic anhydrase catalysed HCO 3 ? to CO2 conversions within an acidified diffusion boundary layer, (2) C. serrulata appears to support its photosynthesis by extracellular carbonic anhydrase catalysed CO2 formation from HCO 3 ? without the need for acidic zones, (3) H. ovalis features a system in which H+ extrusion may be followed by HCO 3 ? –H+ co-transport into the cells, and (4) direct, non-H+-mediated, uptake of HCO 3 ? is improbable for any of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号