首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsutomu Ikeda 《Marine Biology》2013,160(2):251-262
Respiration and ammonia excretion rates of 19–24 euphausiids from the epipelagic through bathypelagic zones of the world’s oceans were compiled. Body mass (expressed in terms of dry mass, carbon or nitrogen), habitat temperature and sampling depth were designated as parameters in multiple regression analysis. Results suggested that the three parameters were highly significant, contributing 71–89 % of the variance in respiration rates and 69–81 % of the variance in ammonia excretion rates. Atomic O:N ratios derived from simultaneous measurements of respiration and ammonia excretion rates ranged from 11 to 90 (median: 27), and no appreciable effects of the three parameters on O:N ratios were detected. If global-bathymetric models for the metabolism and chemical composition of copepods and chaetognaths are compared with those of euphausiids, it becomes evident that euphausiids are unique in that they maintain high metabolic rates and accumulate moderate amounts of energy reserves (lipids).  相似文献   

2.
The metabolic rates (oxygen uptake, ammonia excretion, phosphate excretion) of epipelagic marine zooplankton have been expressed as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using the multiple-regression method. Zooplankton data used for this analysis are from phylogenetically mixed groups (56 to 143 species, representing 7 to 8 phyla, body mass range: 6 orders of magnitude) from various latitudes (habitat temperature range:-1.4° to 30°C). The results revealed that 84 to 96% of variation in metabolic rates is due to body mass and habitat temperature. Among the various body-mass units, the best correlation was provided by carbon and nitrogen units for all three metabolic rates. Oxygen uptake, ammonia excretion and phosphate excretion are all similar in terms of body-mass effect, but differ in terms of temperature effect. With carbon or nitrogen body-mass units, calculated Q10 values are 1.82 to 1.89 for oxygen uptake, 1.91 to 1.93 for ammonia excretion and 1.55 for phosphate excretion. The effects of body mass and habitat temperature on the metabolic quotients (O:N, N:P, O:P) are insignificant. The present results for oxygen-uptake rate vs body mass do not differ significantly from those reported for general poikilotherms by Hemmingsen and for crustaceans by Ivleva at a comparable temperature (20°C). The importance of a body-mass measure for meaningful comparison is suggested by the evaluation of the habitat-temperature effect between mixed taxonomic groups and selected ones. Considering the dominant effects of body mass and temperature on zooplankton metabolic rates, the latitudinal gradient of community metabolic rate for net zooplankton in the ocean is estimated, emphasizing the non-parallelism between community metabolic rates and the standing stock of net zooplankton.  相似文献   

3.
Metabolic rates (oxygen consumption, ammonia excretion, phosphate excretion) have been calculated as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using multiple regression. The metabolic data used for this analysis were species structured, collected from Arctic to Antarctic seas (temperature range: -1.7°C to 29.0°C). The data were further divided into geographical and/or seasonal groups (35 species and 43 data sets for oxygen consumption; 38 species and 58 data sets for ammonia excretion; 22 species and 31 data sets for phosphate excretion). The results revealed that the variance attributed to body mass and temperature was highest (93-96%) for oxygen consumption rates, followed by ammonia excretion rates (74-80%) and phosphate excretion rates (46-56%). Among the various body mass units, the best correlation was provided by the nitrogen unit, followed by the dry weight unit. The calculated Q10 values varied slightly according to the choice of body mass units; overall ranges were 1.8-2.1 for oxygen consumption rates, 1.8-2.0 for ammonia excretion rates and 1.6-1.9 for phosphate excretion rates. The effects of body mass and temperature on the metabolic quotients (O:N, N:P, O:P) were insignificant in most cases. Although the copepod metabolic data used in the present analysis were for adult and pre-adult stages, possible applications of the resultant regression equations to predict the metabolic rates of naupliar and early copepodite stages are discussed. Finally, global patterns of net growth efficiency [growth (growth+metabolism)-1] of copepods were deduced by combining the present metabolic equation with Hirst and Lampitt's global growth equation for epipelagic marine copepods.  相似文献   

4.
The relationship between the rates of oxygen consumption, ammonia and phosphate excretion of a pelagic tunicate, the larvacean Oikopleura dioica Fol, 1872 were assessed as a function of size, dry weight and ash-free dry weight at 15°, 20° and 24°C. O. dioica has higher respiration and excretion rates than copepods of similar weight, but the weight exponent of the allometric power function: Y=aX b is similar to that of other poikilotherms. Temperatures above 20°C have a depressing effect on respiration and ammonia excretion. 90% of the variance in metabolic rates is explainable by body mass and temperatures Q10 values for oxygen consumption, ammonia and phosphate excretion, respectively, are 2.45, 1.86 and 1.75 between 15° and 20°C, and 3.75, 2.90 and 3.60 between 20° and 24°C. Metabolic quotients (O:N, O:P, N:P) indicate a protein-oriented diet. The results of this study suggest weak metabolic regulation in O. dioica, an energetic strategy which allows an immediate response to favourable changes in feeding conditions.  相似文献   

5.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

6.
M. Pagano  R. Gaudy 《Marine Biology》1986,93(1):127-136
The respiration and excretion (ammonia and phosphate) of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, were studied in 1978–1979 in relation to food ingestion, temperature and salinity. Suspensions of Tetraselmis maculata were used as food. Respiration was closely dependent on the quantity of the ingested food, displaying a linear relationship with a strong positive-slope coefficient. In most cases, the temperature effect on respiration and excretion was well described by a power-type equation (M=a b T , where M=metabolism and T=temperature) over a rather large temperature range. In some experiments, metabolism curves displayed a maximum at 20°C. The metabolismtem-temperature curves differed between successive experiments, depending on season and/or sampling area, perhaps as a result of different acclimatization processes developing in individuals from different generations and/or among geographically isolated populations. Salinity variations significantly affected respiration, but not excretion. Respiration increased in individuals placed in hypo- or hyper-salinity conditions for a period of 24 h. This inability for complete metabolic regulation is unexpected in a species from a habitat subjected to variable salinity, and may have resulted from a too short acclimatization time in the experiments.  相似文献   

7.
The large bathypelagic mysid Gnathophausia ingens was collected in January 1980 at 400 to 700 m depth from the San Clemente Basin off southern California. Instars 7-8 and Instars 10-12 were starved in the laboratory for up to 19 wk. Oxygen consumption and ammonia excretion rates, and water, protein, lipid, and ash contents were determined periodically during starvation. Protein and lipid were metabolized in approximately equal amounts by starved individuals after the initial weeks of food deprivation. Unidentified components (probably non-protein nitrogenous compounds) apparently were oxidized within the first 7 wk of starvation. Oxygen consumption and ammonia excretion by Instars 7-8 decreased steadily during 19 wk of starvation. In contrast, stable or increasing respiration and excretion rates were observed for fed mysids. The mean respiration rate of Instars 10-12 did not change significantly during 13 wk of starvation, although ammonia excretion rates decreased. Low metabolic rates and large lipid reserves probably help G. ingens to withstand long periods of starvation in the mesopelagic environment. Calculations based on the laboratory data demonstrate that small, infrequent meals could account for the rates of metabolism and growth observed for G. ingens in the field.  相似文献   

8.
Many pteropod species in the eastern tropical North Pacific Ocean migrate vertically each day, transporting organic matter and respiratory carbon below the thermocline. These migrations take species into cold (15–10°?C) hypoxic water (<20?μmol O2 kg?1) at depth. We measured the vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, some of which migrate and some which remain in oxygenated surface waters throughout the day. Within the upper 200?m of the water column, changes in water temperature result in a?~60–75?% reduction in respiration for most species. All three species tested under hypoxic conditions responded to low O2 with an additional?~35–50?% reduction in respiratory rate. Combined, low temperature and hypoxia suppress the metabolic rate of pteropods by?~80–90?%. These results shed light on the ways in which expanding regions of hypoxia and surface ocean warming may impact pelagic ecology.  相似文献   

9.
L. S. Peck  E. M. Harper 《Marine Biology》2010,157(10):2205-2213
Geographical variations in animal characters are one of the main subjects for study in macroecology. Variation with latitude has received special interest. Articulated brachiopods are possibly the commonest macrofossil with large variations in size of taxa through the fossil record. Here, we investigate trends in size of the 3 main orders of articulated brachiopod with latitude and depth. Data were insufficient to identify patterns in Thecideida (a micromorph taxon only recorded from low latitudes). Rhynchonellida had no clear trends in size with latitude or depth. Terebratulida exhibited hemispheric differences in size relations, with increasing length of species towards the pole in the south and no significant trend in the north. Tropical species were small (<20 mm length between 10°N and 10°S), and the largest species were found between 30° and 60° latitude in both hemispheres. There were no articulated brachiopods recorded from the high arctic, and support for a continuous trend in size with latitude was small or absent. In Terebratulida, there was a significant decrease in species length with depth of 1.7 mm per 100 m depth increase. These trends could be explained by competition for space and reduced availability of habitat with progressive depth beyond the continental shelf.  相似文献   

10.
Movements and habitat preferences of sharks relative to a central location are widely documented for many species; however, the reasons for such behaviors are currently unknown. Do movements vary spatially or temporally or between individuals? Do sharks have seasonal habitat and environmental preferences or simply perform movements at random at any time of the year? To help understand requirements for the designation of critical habitats for an endangered top predator and to develop zoning and management plans for key habitats, we examined vertical and horizontal movements, and determined habitat and environmental preferences of scalloped hammerhead sharks (Sphyrna lewini). We tracked seven hammerheads for 19–96 h at Wolf Island (1.38ºN, 91.82ºW) between 2007 and 2009 using ultrasonic transmitters with depth and temperature sensors, and we profiled temperature through the water column. Movements of individual hammerheads fell in two classes: constrained (remaining near the island) and dispersive (moving offshore to pelagic environments). The central activity space or kernel off the southeast side of Wolf Island was small and common to most, but the area varied among individuals (mean ± SE 0.25 ± 0.2 km2), not exceeding 0.6 km2 for any of the sharks, and not changing significantly between seasons. In general, hammerheads showed preference for the up-current habitat on the eastern side of Wolf Island in both the warm and cold seasons. However, the depth of sharks varied with season, apparently in response to seasonal changes in the vertical structure of temperature. Hammerheads performed frequent vertical excursions above the thermocline during offshore movements and, in general, were observed to prefer temperatures of 23–26 °C found above the thermocline. At times, though individuals moved into the thermocline and made brief dives below it. Our results provided evidence that hammerheads (1) are highly selective of location (i.e., habitat on up-current side of island) and depth (i.e., top of the thermocline) while refuging, where they may carry out essential activities such as cleaning and thermoregulation, and (2) perform exploratory vertical movements by diving the width of the mixed layer and occasionally diving below the thermocline while moving offshore, most likely for foraging.  相似文献   

11.
Habitat-forming species on rocky shores are often subject to high levels of exploitation, but the effects of subsequent habitat loss and fragmentation on associated species and the ecosystem as a whole are poorly understood. In this study, the effects of habitat amount on the fauna associated with mussel beds were investigated, testing for the existence of threshold effects at small landscape scales. Specifically, the relationships between mussel or algal habitat amount and: associated biodiversity, associated macrofaunal abundance and density of mussel recruits were studied at three sites (Kidd’s Beach, Kayser’s Beach and Kini Bay) on the southern and south-eastern coasts of South Africa. Samples, including mussel-associated macrofauna, of 10 × 10 cm were taken from areas with 100 % mussel cover (Perna perna or a combination of P. perna and Mytilus galloprovincialis) at each site. The amount of habitat provided by mussels and algae surrounding the sampled areas was thereafter determined at the 4.0 m2 scale. A number of significant positive relationships were found between the amount of surrounding mussel habitat and the abundances of several taxa (Anthozoa, Malacostraca and Nemertea). Likewise, there were positive relationships between the amount of surrounding algal habitat and total animal abundance as well as abundance of mussel recruits at one site, Kini Bay. In contrast, abundance of mussel recruits showed a significant negative relationship with the amount of mussel habitat at Kayser’s Beach. Significant negative relationships were also detected between the amount of mussel habitat and species richness and total abundance at Kidd’s Beach, and between amount of mussel habitat and the abundance of many taxa (Bivalvia, Gastropoda, Maxillopoda, Ophiuroidea, Polychaeta and Pycnogonida) at all three sites. No threshold effects were found, nor were significant relationships consistent across the investigated sites. The results indicate that the surrounding landscape is important in shaping the structure of communities associated with these mussel beds, with significant effects of the amount of surrounding habitat per se. The strength and the direction of habitat effects vary, however, between shores and probably with the scale of observation as well as with the studied dependent variables (e.g. diversity, abundance, mussel recruitment, species identity), indicating the complexity of the processes structuring macrofaunal communities on these shores.  相似文献   

12.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

13.
T. Ikeda 《Marine Biology》1977,41(3):241-252
Herbivorous zooplankton species (Calanus plumchrus, Paracalanus parvus and Euphausia pacifica) and carnivorous species (Parathemisto pacifica and Pleurobrachia pileus) collected from Saanich Inlet, British Columbia, Canada, were maintained in the laboratory under fed and starved conditions. Respiration rate and excretion rates of ammonia and inorganic phosphate were measured successively on the same batch populations of each species in different feeding conditions. Respiration rate remained at a constant level or increased during the feeding experiment but decreased progressively in starved individuals. Herbivorous, but not carnivorous, species showed a rapid decrease in both excretion rates for the first few days of an experiment irrespective of feeding conditions. However, the general level of excretion rates of fed specimens was higher than that of starved ones. The O:N, N:P and O:P ratios were calculated from respiration, ammonia excretion and phosphate excretion and discussed in relation to metabolic substrates of animals during the experiment. A marked difference was shown in the O:N ratio between fed hervivores (>16) and fed carnivores (7 to 19), suggesting highly protein-oriented metabolism in the latter. One unknown factor causing variation in excretion rates is speculated to be the physiological stress on animals during sampling from the field. It is suggested that the laboratory measurement of realistic excretion rates of zooplankton is difficult owing to their large fluctuations, but this is not the case with respiration rate.  相似文献   

14.
Intertidal rocky shores are characterized by vertical zonation that results from the interplay between environmental conditions, organism physiology, and species interactions. Metabolism of intertidal organisms is highly variable between species and it changes with vertical position along the intertidal gradient. The present study aimed to quantify the carbon metabolism of nine intertidal rocky shore gastropods, in order to clarify their respective roles in carbon production during emersion and immersion. The influences of monthly temperature variation and tidal level were tested for each species. Analyses were performed in the laboratory using the infrared gas analyzer method for measuring aerial respiration rates, and the dissolved inorganic carbon and total alkalinity technique for measuring aquatic respiration rate and calcification. Hourly carbon fluxes were calculated for the mean annual temperature of 13 °C measured in both air and underwater in the study area. Respiration rates were similar for emersion (8–25 μmol COg AFDW?1 h?1) and immersion (10–23 μmol DIC g AFDW?1 h?1). For all species, underwater respiration fluxes were more influenced by monthly temperature variation than by air fluxes, probably as an adaptation to the rapid changes occurring during emersion. Calcification was an important factor influencing annual carbon fluxes for all studied species; every species showed different calcification rates according to its size and position on the intertidal zone. Annual carbon emissions were calculated using the mean immersion/emersion time of each species. Intertidal gastropod carbon emission was primarily influenced by body biomass and their vertical position within the intertidal zone.  相似文献   

15.
We studied the spatial variability in the size at first maturity and the reproductive cycle of Paracentrotus lividus in Galicia, contributing key information for the exploitation and management of this resource. The size at maturity varied between 20.4 (±1.2 SE) mm and 27.9 ± 1.2 mm and was smaller in areas of low population density where sea urchins do not form patches. Using a nonlinear model, we analysed the effect of depth, body size, sex and population density on the temporal pattern of the gonad index. The maximum and minimum indices were obtained at 4 m depth in the months before and after the spring spawning, respectively. The depth also affected the cycle phase, and the sea urchins at 4 m depth spawned 9.4 ± 3.0 days later than the sea urchins at 8 m depth and 20.5 ± 3.0 days later than those at 12 m depth. Moreover, the sea urchins living in patches showed a slight increase in gonad size as a consequence of the better-quality habitat. This shows that there is no intraspecific competition in this area despite the high population densities reached (18.5 kg m?2).  相似文献   

16.
Comparative use of shelter use by three sympatric species of combtooth blenny (Ecsenius stictus, Glyptoparus delicatulus, and Salarias patzneri) was studied among micro-atolls in the lagoon at Lizard Island (14°42′S, 145°30′E), northern Great Barrier Reef, Australia. Blenny species used different sized holes; however, the average diameter and depth of holes used by the smallest and largest species differed by only 4 and 25 mm, respectively, indicating interspecific differences in suitable refuge can be very subtle. Both hole diameter and depth were positively related to total length of fish, suggesting use of holes relates to interspecific differences in body size. Total abundance of blennies was best explained by a general linear model that included either the number of holes or total habitat area on individual micro-atolls, predictor variables that were positively correlated with each other. However, the relative importance of variables differed among the three species, feeding area being most important for S. patzneri, feeding area and number of holes for E. stictus, and variance in hole diameter being the best explanatory variable for G. delicatulus abundance. The number of blenny species on a micro-atoll was best explained by variance in hole diameter, emphasizing the influence of refuge size variety in fish diversity. It is likely that subtle habitat partitioning, which relates to interspecific differences in body size, contributes to the co-existence of blenny species within the same microhabitat, but presence of holes is unlikely to regulate abundance of these fish.  相似文献   

17.
Abstract: Biodiversity is too complex to measure directly, so conservation planning must rely on surrogates to estimate the biodiversity of sites. The species richness of selected taxa is often used as a surrogate for the richness of other taxa. Surrogacy values of taxa have been evaluated in diverse contexts, yet broad trends in their effectiveness remain unclear. We reviewed published studies testing the ability of species richness of surrogate taxa to capture the richness of other (target) taxa. We stratified studies into two groups based on whether a complementarity approach (surrogates used to select a combination of sites that together maximize total species richness for the taxon) or a richness‐hotspot approach (surrogates used to select sites containing the highest species richness for the taxon) was used. For each comparison of one surrogate taxon with one target, we used the following predictor variables: biome, spatial extent of study area, surrogate taxon, and target taxon. We developed a binary response variable based on whether the surrogate taxon provided better than random representation of the target taxon. For studies that used an evaluation approach that was not based on better than random representation of target taxa, we based the response variable on the interpretation of results in the original study. We performed a categorical regression to elucidate trends in the effectiveness of surrogate taxa with regard to each of the predictor variables. A surrogate was 25% more likely to be effective with a complementarity approach than with a hotspot approach. For hotspot‐based approaches, biome, extent of study, surrogate taxon, and target taxon significantly influenced effectiveness of the surrogate. For complementarity‐based approaches, biome, extent, and surrogate taxon significantly influenced effectiveness of the surrogate. For all surrogate evaluations, biome explained the greatest amount of variation in surrogate effectiveness. From most to least, extent, surrogate taxon, and target taxon explained the most variation after biome. Surrogate taxa were most effective in grasslands and in some cases boreal zones, deserts, and tropical forests; surrogate taxa also were more effective in studies examining larger areas. Herpetofauna were the most effective taxon as both surrogate and target when a richness‐hotspot approach was used; however, herpetofauna were analyzed in fewer studies, so this result is tentative. For complementarity approaches, taxa that are easy to measure and tend to have a large number of habitat specialists distributed collectively across broad environmental gradients (e.g., plants, birds, and mammals) were the most effective surrogates.  相似文献   

18.
The family of tiger beetles (Cicindelidae) is an appropriate indicator taxon for determining regional patterns of biodiversity because (1) its taxonomy is stabilized; (2) its biology and general life history are well understood, (3) individuals are readily observed and manipulated in the field, (4) the family occurs world-wide and in a broad range of habitat types; (5) each species tends to be specialized within a narrow habitat; (6) patterns of species richness are highly correlated with those of other vertebrate and invertebrate taxa; and (7) the taxon includes species of potential economic importance. Logistical advantages provide some of the strongest arguments for selecting tiger beetles as an appropriate indicator taxon. Species numbers of tiger beetles are relatively well known for 129 countries. Eight countries alone account for more than half the world total of 2028 known species. Species numbers are also indicated for eleven biogeographical zones of the world. For gridded squares across North America, the Indian subcontinent, and Australia, species richness of tiger beetles, birds, and butterflies shows significant positive correlations. However, tiger beetle species numbers can be reliably determined within fifty hours on a single site, compared to months or years for birds or butterflies, and the advantage of using tiger beetles in conservation biology is evident  相似文献   

19.
Nitrogen excretion and assimilation efficiencies of individual Lithognathus lithognathus (Cuvier 1830), a marine teleost from high energy surf zones in Algoa Bay, South Africa, were determined under laboratory conditions in 1985. Nonfaecal-nitrogen excreted by starved and fed L. lithognathus consists mainly of ammonia with urea and amino acids as secondary excretory products. Ammonia excretion rates were temperature dependant with the excretion rate of starved fish significantly lower than those of fed fish, at all three experimental temperatures. The mass component b of the mass/ammonia excretion equation was temperature independent and ranged from 0.651 to 0.700 and 0.589 to 0.635 for starved and fed fish respectively. The mean percentage of food energy lost via dissolved nonfaecal excretory products (exogenous plus endogenous) was 6.11±6.07%. Assimilation efficiencies ranged from 70.75 to 99.29% for dry matter and from 95.72 to 99.58% on an energy basis. The combined nonfaecal and faecal energy loss was calculated at 11.87% of the ingested energy. The benthic feeding ichthyofauna recycle 255 g total nitrogen per metre strip per year which constitutes 2% of total phytoplankton nitrogen requirements of the surf zone.  相似文献   

20.
Respiratory rates of Anomalocera patersoni, sampled in a temperate area (Gulf of Marseilles, France), during the cold period, are measured and compared to those of individuals of the same species from subtropical latitudes (South Morocco, Canarian area). Males, females and young stages have been examined to estimate the temperature-metabolism and weight-metabolism relationships as a function of climatic adaptation. Small individuals consume oxygen at a higher rate than large ones; males at a higher rate than females. Optimum temperature ranges are different for subtropical and temperate populations: the upper limit is about 14° to 5°C for Mediterranean, and about 18° to 19°C for subtropical individuals. At 14° and 18°C, a positive linear correlation exists when log respiration is plotted against log dry weight. For the temperature conditions prevailing in a given habitat, the regression coefficients are strongest. A. patersoni appears to be adapted metabolically to the average temperature of its habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号